

DEPARTMENT OF PHYSICS

BACHELOR OF PHYSICS (Aided)

2025-2028 BATCH

BACHELOR OF SCIENCE IN PHYSICS
CHOICE BASED CREDIT SYSTEM (CBCS) &
LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK (LOCF)
SCHEME & SYLLABUS OF EXAMINATION

2025-2028 BATCH

I-V	VI	24BONL1 24BONL2 24BONL3	Online Course I Online Course II Online Course III	ACC	-	-	-	-	-	-	-	-
II	I	TAM2502/ HIN2502/ FRE2502	Tamil Paper II/ Hindi Paper II/ French Paper II	L	6	88	2	3	25	75	100	3
	II	ENG2502	English Paper II	E	5	73	2	3	25	75	100	3
	III	PS24C02	Heat and Thermodynamics	CC	6	88	2	3	25	75	100	5
		PS23CP1	Physics Practicals – I	CC	3	45	-	3	25	75	100	4
		CE24A04/ TH25A28	Chemistry Paper II / Mathematics – Elementary to Advanced	GE	5/8	73/ 118	2	3	20/2 5	55/ 75	75/ 100	4 /5
		CE25AP2	Chemistry Practical for Physicists	GE	3	45	-	3	15 [#]	35 [#]	50	2
	IV	*NME25B2 / NME25A2	Basic Tamil II / Advanced Tamil II	AEC	-	-	-	-	100	-	100	G r.
		NM25UHR	Universal Human Values and Human Rights	AEC	2	30	-	-	100	-	100	2
I-II	VI	NM25GAW	General Awareness	AECC	SS	-	-	-	100	-	100	G r.
I-II	VI	COM25SER	Community Services 30 Hours	GC	-	-	-	-	-	-	-	-
I-V	VI	24BONL1 24BONL2 24BONL3	Online Course I Online Course II Online Course III	ACC	-	-	-	-	-	-	-	-

* - After class hours

CC – Core Courses

CA – Continuous Assessment

GE – Generic Elective

ESE - End Semester Examination

AEC – Ability Enhancement Course

AECC – Ability Enhancement Compulsory Course

GC – General Course

ACC – Additional Credit Course

SS – Self Study

Gr - Grade

CA conducted for 25 and converted to 15

ESE conducted for 75 and converted to 35

Examination System

Pattern:

Semester system will be followed. A semester consists of a minimum of 90 working days excluding the days of conduct of ESE. There will be Continuous Internal Assessment (CA) to evaluate the performance of students in each course and the End Semester Examination will be held at the end of every semester.

Weightage assigned to various components of Continuous Internal Assessment

Theory

CIA Test	: 5 marks (conducted for 45 marks after 50 days)
Model Exam	: 7 marks (Conducted for 75 marks after 85 days)
Seminar/Assignment/Quiz	: 5 marks
Class Participation	: 5 marks
Attendance	: 3 marks
Total	: 25 Marks

Practical

Lab Performance	: 7 marks
Regularity	: 5 marks
Model Exam	: 10 marks
Attendance	: 3 marks
Total	: 25 marks

CA - Question Paper Pattern and Distribution of Marks

Language and English

Section A 5 x 1 (No choice)	: 5 Marks
Section B 4 x 5 (4 out of 6)	: 20 Marks (250 words)
Section C 2 x 10 (2 out of 3)	: 20 Marks (500 words)
Total	: 45 Marks

Core and Allied (first 3 units)

CA Question Paper Pattern: 3 x 15 = 45 Marks

CA Question from each unit comprising of

One question with a weightage of 2 Marks :2 x 3 = 6

One question with a weightage of 5 Marks (Internal Choice at the same CLO level):5 x 3 = 15

One question with a weightage of 8 Marks (Internal Choice at the same CLO level): $8 \times 3 = 24$

Advanced Tamil / Basic Tamil

CIA Test	: 25 marks (conducted for 50 marks after 50 days)
Model Exam	: 50 marks (Conducted for 75 marks after 85 days)
Quiz	: 15 marks
Assignment	: 10 marks
Total	: 100 Marks

Introduction to Entrepreneurship

Quiz	: 50 marks
Assignment	: 25 marks
Project / Case Study	: 25 marks
Total	: 100 Marks

End Semester Examination – Question Paper Pattern and Distribution of Marks

Language and English

Section A 10 x 1 (10 out of 12)	: 10 Marks
Section B 5 x 5 (5 out of 7)	: 25 Marks (250 words)
Section A 4 x 10 (4 out of 6)	: 40 Marks (600 - 700 words)
Total	: 75 Marks

Core and Allied

ESE Question Paper Pattern: $5 \times 15 = 75$ Marks

Question from each unit comprising of

One question with a weightage of 2 Marks : $2 \times 5 = 10$

One question with a weightage of 5 Marks (Internal Choice at the same CLO level): $5 \times 5 = 25$

One question with a weightage of 8 Marks (Internal Choice at the same CLO level): $8 \times 5 = 40$

Criteria for Attendance:

3 Marks (Attendance 75% - 80% - 1 Mark, 81% - 90% - 2 Marks, 91% - 100% - 3 Marks)

COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
PS25C01	MECHANICS, PROPERTIES OF MATTER AND SOUND	Theory	88	2	-	5

Preamble

To give the students fundamental ideas on conservation laws, rotational and vibrational motion of rigid bodies, elasticity, viscosity, surface tension and basics of sound.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Understand and define the laws involved in mechanics, properties of matter and sound	K2
CLO2	Analyze the behavior of various bodies due to kinematic and dynamic forces acting on the body.	K4
CLO3	Apply the key evidence of the classical description of the properties of matter	K3
CLO4	Recall the principles and basic equations and apply them to unseen problems	K4
CLO5	Acquire problem solving skills on par with industry	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	M	M	S	S	S	S
CLO2	S	S	S	S	S	S
CLO3	S	S	S	S	S	S
CLO4	S	S	S	L	S	S
CLO5	S	M	M	M	S	S

S- Strong; M-Medium; L-Low

Syllabus

Unit I

18 Hrs

Impact of elastic bodies and Friction

Conservation Laws –Collision- Impulse of a force – Fundamental principle of impact-Direct impact of two smooth spheres- loss of K.E due to direct impact of two smooth spheres-Oblique impact of a smooth sphere on a fixed smooth plane –oblique impact of two smooth spheres and loss of K.E due to oblique impact – friction – Laws of friction – angle of friction –cone of friction – Experimental method for determining co-efficient of friction between two surfaces- Equilibrium of a body on a rough inclined plane acted upon by an External force – AI tool - PhET Interactive Simulations

Unit II

18Hrs

Rigid Body Dynamics

Rigid body – rotational and vibrational motion – Torque – angular momentum–Angular impulse–moment of inertia – radius of gyration– dimensions and units of moment of inertia– Analogous parameters in translational and Rotational motion.

Simple Harmonic Motion

Composition of two simple harmonic motions in a straight line– Composition of two simple harmonic motions of equal time periods at right angles–Lissajous Figures – Experimental methods –Uses of Lissajous Figures

Unit III

17 hrs

Elasticity

Elasticity – Three types of elastic moduli and relation between them – Poisson's ratio – Bending of beams – Expression for bending moment – Depression of the loaded end of a Cantilever – uniform – non uniform bending – theory – experiment – pin and microscope method – work done in uniform bending – Koenig's method – non-uniform bending – theory – expression for couple per unit twist – determination of rigidity modulus – Static torsion method with scale and telescope – Rigidity modulus by torsion pendulum with mass – I section girders.

Unit IV

17 hrs

Viscosity and Surface tension

Viscosity – Poiseuille's formula for the flow of a liquid through a capillary tube– corrections– Poiseuille's method to determine the coefficient of viscosity of liquid – Ostwald's viscometer – variation of viscosity with temperature and pressure – Searle's viscometer (rotating cylinder method). Effect of temperature on brake oils in cars.

Surface tension– work done in increasing the area of the surface – work done in blowing a bubble- experimental determination of surface tension – Jaeger's method- Quincke's method– variation of surface tension with temperature – drop weight method- experimental determination of interfacial tension between water and kerosene.

Unit V

18 hrs

Sound

Velocity of transverse waves along stretched string – Laws of transverse vibration of strings – Melde's experiment– Siren – Determinations of frequency of a tuning fork by revolving drum method and phonic stroboscopic method – Means of Lissajous method

Acoustics– Reverberation– Sabine's reverberation formula – Acoustics in Ancient Temple architecture - Determination of absorption coefficient. **Ultrasonics**– properties – production– Galton whistle – Magnetostriction oscillator – Piezo-electric oscillator- detection and application. Importance of Industry 4.0 in Physics- AI tool - PhET Interactive Simulations

Text Books

S. No	Authors	Title	Publishers	Year & Edition
1	Murugeshan. R	Mechanics and Mathematical Methods	S. Chand & Co Ltd, New Delhi	2014, 3 rd Edn
2	Mathur D. S	Mechanics	S. Chand & Co Ltd, New Delhi	2012, 2 nd Edn
3	R. Murugesan	Properties of Matter	S. Chand and Company Pvt Ltd	2013, 11 th Edn
4	Saighal. R. L	Textbook of Sound	S. Chand & Co Ltd	1998, 2 nd Edn
5	P. Kaliraj, & T. Devi	Higher Education for Industry 4.0 and Transformation to Education 5.0 ebook ISBN:9781000683219, 1000683214	CRC Press	2022, 1 st Edn

Reference Books

S. No	Authors	Title	Publishers	Year & Edition
1	Bhargava& Sharma	A Text Book of Mechanics	Ratan Prakashan Mandir	1990, 7 th Edn
2	Brijlal Subramanyam	Properties of Matter	S. Chand and Company Pvt Ltd	1995, 3 rd Edn
3	Murugesan. R	Properties of matter, Sound and thermal physics	S. Chand & Co Ltd	2011, 1 st Edn

References For E-Content:

1. <https://phet.colorado.edu>

Pedagogy

Chalk and Talk lectures, Group Discussion, Seminar, Interaction, power point presentation, Weblinks, NPTEL Lectures.

Course Designers

1. Dr. M. Lavanya

COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
PS23CP1	PHYSICS PRACTICAL I	Practical	-	-	3hrs/week	-

Preamble

This course introduces students to the methods of experimental physics. Emphasis will be given on laboratory techniques such as accuracy of measurements and data analysis. The concepts that are learnt in the lecture sessions will be translated to the laboratory sessions thus providing a hands-on learning experience such as in measuring the basic concepts in properties of matter, Sound, Heat, Optics, Electricity and Magnetism.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1.	Apply knowledge of mathematics and physics fundamentals and an instrumentation to arrive solution for various problems.	K2
CLO2.	Understand the usage of basic laws and theories to determine various properties of the materials given.	K2
CLO3.	Understand the application side of the experiments	K2
CLO4.	Use standard methods to calibrate the given low range voltmeter and ammeter and to measure resistance of the given coil and various physical quantities.	K3
CLO5.	Use of basic laws to study the spectral properties and optical properties of the given prism.	K3

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	L	L	L	L
CLO2	S	S	S	S	M	M
CLO3	S	S	S	S	M	M
CLO4	S	S	S	S	M	M
CLO5	S	S	S	S	M	M

S- Strong; M-Medium; L-Low

Syllabus

List of Experiments

1. Determination of Young's Modulus of the given rectangular beam by Non Uniform bending using Optic lever.
2. Determination of Young's Modulus of the given rectangular beam by Uniform bending using pin and microscope.
3. Determination of Rigidity modulus of the material of the given rod by using Static torsion apparatus.
4. Determination of Rigidity modulus of the material of the suspension wire using Torsion pendulum.
5. Determination of Moment of Inertia of the given disc by torsional oscillations.
6. Determination of frequency of AC mains using Sonometer.
7. Determination of Acceleration due to gravity using Compound pendulum.
8. Determination of thermal conductivity of the given bad conductor using Lee's disc method.
9. Determination of Refractive index of the given solid prism using Spectrometer
10. Determination of Refractive index of a liquid using hollow prism - Spectrometer
11. Determination of wavelength of prominent lines of mercury spectrum using grating by minimum deviation method using Spectrometer
12. Calibration of a low range voltmeter using Potentiometer
13. Calibration of a low range ammeter using Potentiometer
14. Determination of unknown resistance of the given coil of wire using potentiometer.
15. Determination of Moment of a magnet using deflection magnetometer by Tan C method.
16. Determination of B_H by measuring the field along the axis using deflection magnetometer.
17. Determination of Temperature co-efficient of resistance of a Thermistor using Wheatstone's bridge.
18. Determination of Spring Constant of different metals.
19. Determination of frequency of tuning fork using Melde's apparatus.
20. Determination of Planck's constant using different LEDs.

Pedagogy:

Demonstration and practical sessions

Course Designers:

1. Dr. M. Lavanya
2. Dr. G. Praveena

COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
PS24A01	PHYSICS PAPER- I (For Chemistry)	Theory	58	2	-	4

Preamble

This paper introduces the students to the basic concepts of Elasticity, Rotational motion, Heat and thermodynamics, Sound, Optics, Atomic and Nuclear Physics

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Define the fundamental concepts of material properties, heat, sound, optics, atomic and nuclear physics	K1
CLO2	Demonstrate the practical concepts behind the optics, heat and sound through experimental setup	K2
CLO3	Apply the fundamental properties and the associated laws to understand physical systems	K2
CLO4	Analyze the thermo dynamical, optical properties of matter and to find its applications in various fields	K3

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	S	S	M	L
CLO2	S	M	S	M	S
CLO3	S	M	S	L	M
CLO4	S	M	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

Unit - I

11 Hrs

Properties of Matter

Elasticity: Moduli of elasticity – bending moment-expression – Young's modulus by uniform and non-uniform bending – theory and experiment Torsion pendulum – couple per unit twist – work done in twisting – determination of the rigidity modulus of the material of the wire.

Unit - II

12 Hrs

Transmission of Heat

Conduction process: Thermal conductivity – Rectilinear field along a bar – Measurement of Thermal conductivity of a bad conductor by Lee's disc method

Convection process: Lapse rate – stability of atmosphere – Green house effect

Radiation process: Solar constant – Pyrheliometer – solar energy and its applications (flat plate collector & solar cooker) – concentration solar collector, Fresnel Lenses method.

Unit - III

11 Hrs

Thermodynamics, Sound:

Thermodynamics: Thermodynamic variables – Extensive and Intensive variables – Maxwell's Thermodynamic relation – Thermodynamic potential – Significance – relation of thermodynamics potentials with their variables

Ultrasonics: Piezo electric & Magnetostriction method – Principle – Construction – Working and Applications.

Unit - IV

12 Hrs

Optics:

Dispersion: Dispersive power-combination of prisms to produce (i) deviation without dispersion (ii) dispersion without deviation – direct vision spectroscope.

Interference: Air wedge – determination of diameter of a wire – Newton's rings-determination of refractive of a liquid

Polarization: Production, detection and analysis of different types of polarized light – quarter and half wave plates

Unit - V

12Hrs

Atomic Physics: Vector atom model – Quantum numbers associated with vector atom model – Pauli's exclusion principle – excitation and ionization potential – experimental determination – **Franck and Hertz method.**

Particle Physics: Elementary particles – classification – particles and antiparticles –conservation laws and symmetry – Quark model.

Books for Study:

S.No	Authors	Title	Publishers	Year & Edition
1	Brijlal Subramanium	Heat and thermodynamics	S.Chand and Co,	2012, 16 th Edn.
2	Brijlal Subramanium & Hemne.P.S,	Heat thermodynamics and Statistical Physics	S.Chand and Co,	2011, 12 th Edn
3	Brijlal Subramanium	Optics	S.Chand and Co,	2012, 21 st Edn
4	Murugeshan R	Allied Physics	S.Chand and Co,	1998, 1 st Edn

Books for Reference:

S.No	Authors	Title	Publishers	Year & Edition
1	Jayaprakash. N	Heat and thermodynamics	S Chand and Co,	2012, 16 th Edn
2	Mathur D.S	Properties of Matter	S Chand and Co,	1970, 2 nd Edn
3	Murugesan R	Modern Physics	S. Chand and Co ,	2013, 9 th Edn

References For E-Content:

1. <https://youtu.be/qQhOYbztNIQ>
2. <https://youtu.be/gcI-bkr7ilg>
3. <https://youtu.be/7tr4qWPgP40>
4. https://youtu.be/N5GAHntU_nQ
5. <https://youtu.be/hDP6egLrsdM>
6. <https://youtu.be/nmsPcTzIkzw>
7. <https://youtu.be/rAhvvyQBUt0>
8. <https://youtu.be/TUaTNzZ00oM>
9. <https://youtu.be/tDB3zP9MEZc>
10. <https://youtu.be/wvl0QAQCJyc>

11. <https://youtu.be/4nbBAG-848c>
12. https://youtu.be/nJXB0yD_wEw
13. https://youtu.be/K4Do_yWJt2k
14. <https://youtu.be/HH58VmUbOKM>
15. <https://youtu.be/DjnDX28l4xA>
16. <https://youtu.be/iVYGOWAtZCQ>
17. <https://youtu.be/SQtOYCei-Pc>
18. <https://youtu.be/kykp-S8S5dU>

Pedagogy

Chalk and talk, PPT, Seminar, Group discussion, Interaction

Course Designers:

1. Mrs. S. Subanya

COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
PS23AP1	PHYSICS PRACTICAL	Practical	-	-	3hrs/week	-

Preamble

To enable the student to gain practical knowledge

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Gain knowledge in the scientific methods and learn the process of measuring different Physical variables	K1
CLO2	Educate the basics of instrumentation, data acquisition and interpretation of results	K2
CLO3	Enhance the students understand the concepts in materials Properties	K2
CLO4	Have a deep knowledge of fundamentals of optics, electric circuits, magnetism and sound	K3

Mapping with Programme Learning Outcomes

CLO	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	S	S	S	M
CLO2	S	S	S	S	S
CLO3	S	M	S	M	M
CLO4	S	M	M	S	M

S- Strong; M-Medium;

Syllabus

List of Experiments

Any Eighteen

1. Young's Modulus –Non- Uniform bending –Pin and Microscope
2. Young's Modulus – Uniform bending – Optic lever
3. Rigidity modulus - Static torsion
4. Rigidity Modulus - torsional pendulum
5. Moment of inertia - torsional pendulum
6. Acceleration due to gravity - compound pendulum
7. Thermal conductivity of a bad conductor – Lee's disc method
8. AC frequency - Sonometer
9. Refractive index of solid prism - spectrometer
10. Refractive index of liquid-Hollow prism - spectrometer
11. Wave length- Grating - Minimum deviation method - Spectrometer
12. Low range Ammeter Calibration - Potentiometer
13. Low range Voltmeter Calibration - Potentiometer
14. Moment of a magnet in the Tan C position
15. Volt-Ampere characteristic of a p-n junction diode in the forward and reverse directions
16. Logic gates - Verification of the truth table
17. Characteristics of Zener diode
18. Closed loop gain of Operational Amplifier in Inverting mode
19. Closed loop gain of Operational Amplifier in Non Inverting mode.

Pedagogy

Demonstration and Practical Sessions

Course Designers:

1. Mrs. T. Poongodi

COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
PS24C02	HEAT AND THERMODYNAMICS	THEORY	88	2	-	5

Preamble

- The aim of this course is to acquire knowledge in heat transfer, entropy, production of low temperature and liquefaction of gases, thermal radiation and statistical thermodynamics.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Understand the central concepts and basic idea on specific heat, entropy, quantum theory of radiation	K2
CLO2	Apply the concepts of low temperature physics in liquefaction of gases	K3
CLO3	Use the tools needed to formulate and solve problems in thermodynamical systems such as gases, heat engines etc	K3
CLO4	Become familiarize with the concepts of thermodynamical potentials.	K3
CLO5	Distinguish the particles based on the concepts and principles of Statistical Physics	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	M	M	S	S	M	S
CLO2	S	S	S	S	M	S
CLO3	S	S	S	M	M	S
CLO4	S	S	S	S	L	S
CLO5	S	S	S	S	S	S

S- Strong; M-Medium; L-Low

HEAT AND THERMODYNAMICS - PS24C02 – 88 HRS

Unit I

(18 Hrs)

Kinetic theory of gases

Postulates of kinetic theory of gases – derivation of expression for pressure exerted by gas - Maxwell's Law of Distribution of Velocities (no derivation), Mean Free Path - Brownian motion – Langevin's theory of Brownian motion – Einstein's theory of Brownian motion – degree's of freedom – Maxwell's law of equipartition of energy - van der Waal's equation of state – critical constants – experimental determination of critical constants.

Quantum Theory of Specific Heat

Specific heat of solids - Dulong and Petits law and the deduction – failure of Dulong and Petit's law – Einstein's theory and its limitation – Debye theory of specific heat of solids – specific heat of gases – Variation of specific heat of diatomic gases with temperature – applications of high specific heat capacity of water.

Unit II

(18 Hrs)

Low Temperature Physics

Methods of production of low temperatures – Expression for temperature inversion – Principle of regenerative cooling - Joule Thomson effect – Porous plug experiment – its theory and result – Joule Thomson effect for perfect and real gases – Liquefaction of Hydrogen & Helium – Helium I and Helium II - Lambda point - super fluidity – adiabatic demagnetization – application in refrigerators and deep freezers - Traditional Cooling Techniques in India - Heat Transfer in Traditional Indian Architecture - Applications of IKS in Modern Heat Management¹⁻²

Unit III

(17 Hrs)

Thermal Physics

Quantum theory of radiation- Planck's hypothesis – average energy of Planck's oscillator – Planck's radiation law and its experimental verification - Derivation of Planck's law – Derivation of Wein's law and Rayleigh-Jean's from Planck's law – Stefan's and Wein's displacement laws from Planck's law – Room heaters and radiators in cars - solar thermal system (water heater) – Evolution of Solar cooking - Its Role in Advancing Sustainable Cooking Alternatives³⁻⁴

Unit IV

(18 Hrs)

Laws of Thermodynamics and Entropy

First law of thermodynamics and it's consequences – Isothermal and adiabatic processes – reversible, irreversible and quasi-static processes – second law and entropy - physical significance of entropy - Entropy of a perfect gas - Thermodynamic potentials- internal energy (U)- Helmholtz function (F)- Gibb's function (G) and enthalpy (H) – significance of thermodynamic potentials - Maxwell's thermodynamics relation – the (T-dS) equation –

Clapeyron's latent heat equation using Maxwell's thermodynamics relation – understanding entropy in steam engines.

Unit V

(17 Hrs)

Statistical Physics

Probability- Macrostate and microstate – phase space – thermodynamic probability – Ensembles – Kinds of Ensembles (concepts only) – Maxwell's Boltzmann distribution law- Maxwell's Boltzmann distribution in terms of temperature – quantum statistics – Bose Einstein distribution law – Fermi - Dirac distribution law – Comparison of three statistics.

Text Book

S. No	Authors	Title	Publishers	Year and Edition
1	Brijlal N Subrahmanyam P.S. Hemne	Heat Thermodynamics and Statistical Physics and applications	S. Chand	2012 and 3 rd edn
2	R. Murugeshan Er. Kiruthiga Sivaprasath	Thermal Physics	S. Chand	2012 and 3 rd edn

Books for Reference

S. No	Authors	Title	Publishers	Year and Edition
1	A.B Gupta H.P. Roy	Thermal Physics	Arunabha Sen	2005 and 1 st edn
2	Agrawal Prakash	Thermal Physics	Pragati Prakashan	2015 and 27 th edn
3	Agrawal Prakash	Thermodynamics and Statistical Physics	Pragati Prakashan	2015 and 27 th edn

Resources of e-content for IKS

1. <https://www.youtube.com/watch?v=LGh5uQhTEXc>
2. <https://ozonecell.nic.in/wp-content/uploads/2024/04/Booklet-on-Indias-Journey-Towards-Sustainable-Cooling-web-version-Final.pdf>
3. <https://mnre.gov.in/en/solar-cookers>
4. https://www1.eere.energy.gov/solar/pdfs/solar_timeline.pdf

Pedagogy

- Chalk and talk, PPT, Seminar, Group discussion, Interaction, Weblinks, NPTEL Lectures.

Course Designers

Dr. G. Praveena

COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
PS23CP1	PHYSICS PRACTICALS I	PRACTICAL	-	-	45	4

Preamble

- This course introduces students to the methods of experimental physics. Emphasis will be given on laboratory techniques such as accuracy of measurements and data analysis. The concepts that are learnt in the lecture sessions will be translated to the laboratory sessions thus providing a hands-on learning experience such as in measuring the basic concepts in properties of matter, Sound, Heat, Optics, Electricity and Magnetism.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Apply knowledge of mathematics and physics fundamentals and an instrumentation to arrive solution for various problems.	K2
CLO2	Understand the usage of basic laws and theories to determine various properties of the materials given.	K2
CLO3	Understand the application side of the experiments	K2
CLO4	Use standard methods to calibrate the given low range voltmeter and ammeter and to measure resistance of the given coil and various physical quantities.	K3
CLO5	Use of basic laws to study the spectral properties and optical properties of the given prism.	K3

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	L	L	L	L
CLO2	S	S	S	S	M	M
CLO3	S	S	S	S	M	M
CLO4	S	S	S	S	M	M
CLO5	S	S	S	S	M	M

S- Strong; M-Medium; L-Low

PHYSICS PRACTICALS I - PS23CP1 – 45 HRS
List of Experiments

(any 16)

1. Determination of Young's Modulus of the given rectangular beam by Non Uniform bending using Optic lever.
2. Determination of Young's Modulus of the given rectangular beam by Uniform bending using pin and microscope.
3. Determination of Rigidity modulus of the material of the given rod by using Static torsion apparatus.
4. Determination of Rigidity modulus of the material of the suspension wire using Torsion pendulum.
5. Determination of Moment of Inertia of the given disc by torsional oscillations.
6. Determination of frequency of AC mains using Sonometer.
7. Determination of Acceleration due to gravity using Compound pendulum.
8. Determination of thermal conductivity of the given bad conductor using Lee's disc method.
9. Determination of Refractive index of the given solid prism using Spectrometer
10. Determination of Refractive index of a liquid using hollow prism - Spectrometer
11. Determination of wavelength of prominent lines of mercury spectrum using grating by minimum deviation method using Spectrometer
12. Calibration of a low range voltmeter using Potentiometer
13. Calibration of a low range ammeter using Potentiometer
14. Determination of unknown resistance of the given coil of wire using potentiometer.
15. Determination of Moment of a magnet using deflection magnetometer by Tan C method.
16. Determination of B_H by measuring the field along the axis using deflection magnetometer.
17. Determination of Temperature co-efficient of resistance of a Thermistor using Wheatstone's bridge.
18. Determination of Spring Constant of different metals.
19. Determination of frequency of tuning fork using Melde's apparatus.
20. Determination of Planck's constant using different Leds.

Pedagogy:

Demonstration and practical sessions

Course Designers:

Dr. G. Praveena

COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
PS24A02	PHYSICS PAPER- II	THEORY	73	2	-	4

Preamble

- This paper introduces the student to the basic concepts of AC Circuits, Magnetic materials, electronics and digital electronics

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Explore the fundamental concepts of physics	K1
CLO2	Import knowledge about the importance of material properties, heat, sound, optics, atomic and nuclear physics.	K2
CLO3	Understand the energy involved in nuclear reaction	K2
CLO4	Carry out the practical by applying these concepts	K3
CLO5	Get depth knowledge of physics in day today life	K3

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	S	M	L	L
CLO2	S	M	S	M	S	L
CLO3	S	M	S	L	M	S
CLO4	S	M	S	S	S	S
CLO5	S	M	S	M	S	M

S- Strong; M-Medium; L-Low

PHYSICS PAPER- II - PS24A02 - 73 HRS

Unit – I

(14 Hrs)

Alternating currents:

Mean and RMS values of AC -Series and parallel resonant circuits-Power factor- power factor of an ac circuit containing resistance, inductance and capacitance -Transformer- construction- working-losses.

Unit – II

(14 Hrs)

Magnetic materials:

Magnetic Induction – Magnetization – Relation between the three magnetic vectors B, H and M – Magnetic susceptibility – Properties - diamagnetic – paramagnetic – ferromagnetic – anti ferromagnetism and ferrimagnetism – Electron theory of magnetism — Weiss's theory of ferromagnetism - energy loss in hysteresis – importance of hysteresis curves.

Unit – III

(14 Hrs)

Semiconductor Diodes: P and N type semiconductors - PN Junction Diode - Current Flow Mechanism in Forward and Reverse Biased Diode - Zener Diode and Voltage Regulation - Principle and structure of (1) LEDs (2) Photodiode (3) Solar cell - Transistor – Characteristics of CB, CE and CC Configuration – Transistor biasing – Voltage divider biasing.

Unit – IV

(14 Hrs)

Two - terminal Devices and their Applications: Rectifier Diode: Half- wave Rectifiers - Bridge Full-wave Rectifiers, Calculation of Ripple Factor and Rectification Efficiency - **Amplifiers:** Single stage amplifier (CE) - **Sinusoidal Oscillators:** Barkhausen's Criterion for self - sustained oscillations - RC Phase shift oscillator, determination of Frequency- Hartley oscillator.

Unit – V

(15 Hrs)

Digital Electronics:

Boolean algebra-DeMorgan's theorem-OR, AND, NOT, XOR NOR and NAND gates-NOR and NAND gates as universal building blocks-half adder, full adder-RS flip flop-JK flip flop Operational amplifier: Characteristics-virtual ground-summing point-inverting and non inverting amplifier-adder-subtractor.

Text Book

S. No	Authors	Title	Publishers	Year and Edition
1	R. Murugesan	Electricity and Magnetism	S.Chand and Co	2019 and 10 th edn
2	V.K. Metha	Principles of electronics	S.Chand and Co	1980 and 1 st edn
3	Murugesan R	Allied Physics	S.Chand and Co	2005 and 1 st edn

Reference Books

S. No	Authors	Title	Publishers	Year and Edition
1	V. Vijayendran	Introduction to Integrated Electronics	Viswanathan Publishers	2005 and 1 st edn

Pedagogy

- Chalk and Talk lectures, Group Discussion, Seminar, Interaction, Power Point Presentation

Course Designers

Dr. M. Lavanya

COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
PS23AP1	PHYSICS PRACTICALS	PRACTICAL	-	-	45	2

Preamble

- To enable the student to gain practical knowledge

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Gain knowledge in the scientific methods and learn the process of measuring different Physical variables	K1
CLO2	Educate The Basics Of Instrumentation, Data Acquisition And Interpretation of Results	K2
CLO3	Enhance The Students Understand The Concepts In Materials Properties	K2
CLO4	Have a deep knowledge of fundamentals of optics, electric circuits, magnetism and sound	K3

Mapping with Programme Learning Outcome

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	S	S	M	S
CLO2	S	S	S	S	S	S
CLO3	S	M	S	M	M	M
CLO4	S	M	M	S	M	S

S- Strong; M-Medium;

PHYSICS PRACTICALS I - PS23CP1 – 45 HRS
List of Experiments

Any Eighteen

20. Young's Modulus –Non- Uniform bending –Pin and Microscope
21. Young's Modulus – Uniform bending – Optic lever
22. Rigidity modulus - Static torsion
23. Rigidity Modulus - torsional pendulum
24. Moment of inertia - torsional pendulum
25. Acceleration due to gravity - compound pendulum
26. Thermal conductivity of a bad conductor – Lee's disc method
27. AC frequency - Sonometer
28. Refractive index of solid prism - spectrometer
29. Refractive index of liquid-Hollow prism - spectrometer
30. Wave length- Grating - Minimum deviation method - Spectrometer
31. Low range Ammeter Calibration - Potentiometer
32. Low range Voltmeter Calibration - Potentiometer
33. Moment of a magnet in the Tan C position
34. Volt-Ampere characteristic of a p-n junction diode in the forward and reverse directions
35. Logic gates - Verification of the truth table
36. Characteristics of Zener diode
37. Closed loop gain of Operational Amplifier in Inverting mode
38. Closed loop gain of Operational Amplifier in Non Inverting mode.

Pedagogy

- Demonstration and Practical Sessions

Course Designers

Dr. B. Punithaveni