

DEPARTMENT OF PHYSICS

CHOICE BASED CREDIT SYSTEM (CBCS) LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK (LOCF)

**BACHELOR OF SCIENCE - PHYSICS
2023-2026 BATCH**

BACHELOR OF SCIENCE IN PHYSICS
CHOICE BASED CREDIT SYSTEM (CBCS) &
LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK (LOCF)
SCHEME & SYLLABUS OF EXAMINATION
2023-2026 BATCH

Sem	Part	Course Code	Title of the Course	Course Type	Instruction Hours/week	Contact Hours	Tutorial Hours	Duration of Examination	Examination Marks			
									CA	ES E	Total	
I	I	TAM2301 / HIN2301/ FRE2301	Language T/H/F Paper I	L	6	88	2	3	25	75	100	3
	II	ENG2301	English Paper I	L	6	88	2	3	25	75	100	3
	III	PS23C01	Core Physics Paper I: Mechanics, Properties of Matter and Sound	CC	6	88	2	3	25	75	100	5
		PS23CP1	Core Physics Practical I	CC	3			-	-	-	-	-
		CE23A03/ TH23A01	Allied Chemistry Paper-I (offered to B.Sc Physics)/ Mathematical Statistics- I	GE	4	58	2	3	25	75	100	4
		CE23AP2	Allied Chemistry Practicals (offered to B.Sc Physics)	GE	3			-	-	-	-	-
	IV	NME23B 1/ NME23A 1/ NME23E S	Basic Tamil I/ Advanced Tamil I/ Introduction to Entrepreneurship	AE C	2	30	-	3	100	-	100	2

	I	TAM2302 / HIN2302/ FRE2302	Language T/H/F Paper II	L	6	88	2	3	25	75	100	3
	II	ENG2302	English Paper II	L	5	73	2	3	25	75	100	3
II	III	PS23C02	Core Physics Paper II Heat and Thermodynamics	CC	6	86	4	3	25	75	100	5
		PS23CP1	Core Physics Practicals – I	CC	3	45	-	3	25	75	100	4
	III	CE23A04/ TH23A02	Allied Chemistry Paper –II (offered to B.Sc Physics)/ Mathematical Statistics –II	GE	5/6	73/8 8	2	3	20*	55 *	75	4 /5
		CE23AP2	Allied Chemistry Practicals (offered to B.Sc Physics)	GE	3	45	-	3	15 [#]	35 [#]	50	2
	IV	NME23B 2/ NME23A 2	Basic Tamil II/ Advanced Tamil II (outside class hours)	AE C	2	-	-	-	100	-	100	Grade
		23PEPS1	Professional English for Physical Sciences	AE C	2	25	5	-	100	-	100	2
		NM23GA W	GENERAL AWARENESS		-	-	-	-	-	-	100	-
III	I	TAM2303 / HIN2303/ FRE2303	Language III – Tamil Paper III/ Hindi Paper III/ French Paper III	L	6	88	2	3	25	75	100	3
	II	ENG2303	English Paper III	E	5	73	2	3	25	75	100	3
	III	PS23C03	Electricity and Magnetism	CC	4	58	2	3	25	75	100	4
		PS23CP2	Physics Practical – II	CC	3		-	-	-	-	-	-
		TH23A12	Allied – I Mathematics for Physics- I	GE	7	103	2	3	25	75	100	5
	PL23A01 PL23AP1	Allied Botany Paper- I Allied Botany Practical	GE	5 2	73 30	2 -	3 -	20 -	55 -	75 [€] -	4 -	

I-IV	VI	COM15SER	Community Services 30 hours	GC	-	-	-	-	-	-	-	-
V	III	PS23C05	Electronics	CC	6	88	2	3	25	75	100	5
		PS23C06	Solid State Physics	CC	6	88	2	3	25	75	100	5
		PS23E01/ PS23E02/ PS23E03/	Mathematical Physics/ Materials Science – I/ Bio medical Instrumentation-I	DS E	4	58	2	3	25	75	100	5
		PS23CP3	Physics Practical III	CC	6	90		3	25	75	100	4
		PS23SB0 1	Programming in C	SEC	3	41	4	-	100	-	100	3
		PS16AC1/ PS16AC2	Energy Physics- I/ Experimental techniques and data Analysis - I	AC C	SS			3	25	75	100	5\$
		PS23PRO J	Project and Viva Voce	DS E	3	45			25	75	100	5
	IV	NM21CS 1	Cyber Security I	AE CC	2	30	-	-	100	-	100	Gr
	VI	PS23COM	Comprehensive Examination	GC	-	-	-		100	-	100	Gr
	IV	PS23INST	Field Work / Institutional Training	DS E	-	-	-	-	100	-	100	2
VI	VI	COM15SER	Community Services 30 Hours	GC	-	-	-	-	-	-	-	-
	VI	16BONL1 16BONL2	Online Course Online Course	AC C	-	-	-	-	-	-	-	-
	III	PS23C07	Optics and Spectroscopy	CC	5	73	2	3	25	75	100	5
	III	PS23C08	Quantum Mechanics	CC	5	73	2	3	25	75	100	5
	III	PS23C09	Atomic and Nuclear Physics	CC	5	73	2	3	25	75	100	4
	III	PS23E04 PS23E05 PS23E06	Microprocessor/ Materials Science – II/ Bio medical Instrumentation -II	DS E	6	88	2	3	25	75	100	5
		PS16AC3/ PS16AC4	Energy Physics- II/ Experimental techniques and data Analysis - II	AC C	-	-	-	3	25	75	100	5\$
I-V	III	PS23CP4	Physics Practicals- IV	CC	6	90	-	3	25	75	100	4
	III	PS21SB0 2	Non Conventional Energy Resources	SEC	3	43	2	-	100	-	100	3
VI		16BONL1 16BONL2	Online Course Online Course	AC C	-	-	-	-	-	-	-	-

Total Marks – 3800

Total Credits - 140

CC – Core Courses

GE – Generic Elective

CA – Continuous Assessment

ESE - End Semester Examination

AECC – Ability Enhancement Compulsory Course
ACC – Additional Credit Course

GC – General Course
SS – Self Study

Gr – Grade

SEC – Skill Enhancement Course

L - Language

*** CA** conducted for 25 and converted to 20

*** ESE** conducted for 75 and converted to 55

CA conducted for 25 and converted to 15

ESE conducted for 75 and converted to 35

\$Credits applicable to candidates who take up Advanced level Course examination

DSE – Discipline Specific Elective

PS23C01	MECHANICS, PROPERTIES OF MATTER AND SOUND	Category	L	T	P	Credit
			88	2	-	5

Preamble

To give the students fundamental ideas on conservation laws, rotational and vibrational motion of rigid bodies, elasticity, viscosity, surface tension and basics of sound.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Understand and define the laws involved in mechanics , properties of matter and sound	K2
CLO2	Analyze the behavior of various bodies due to kinematic and dynamic forces acting on the body.	K4
CLO3	Apply the key evidence of the classical description of the properties of matter	K3
CLO4	Recall the principles and basic equations and apply them to unseen problems	K4
CLO5	Acquire problem solving skills on par with industry	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	M	M	S	S	S	S
CLO2	S	S	S	S	S	S
CLO3	S	S	S	S	S	S
CLO4	S	S	S	L	S	S
CLO5	S	M	M	M	S	S

S- Strong; M-Medium; L-Low

Syllabus

Unit I

18 Hrs

Impact of elastic bodies and Friction

Conservation Laws – Collision - Impulse of a force – Fundamental principle of impact - Direct impact of two smooth spheres - loss of K.E due to direct impact of two smooth spheres-Oblique impact of a smooth sphere on a fixed smooth plane – oblique impact of two smooth spheres and loss of K.E due to oblique impact – friction – Laws of friction – angle of friction – cone of friction – Experimental method for determining co-efficient of friction between two surfaces- Equilibrium of a body on a rough inclined plane acted upon by an External force.

Unit II	18Hrs
Rigid Body Dynamics	
Rigid body – rotational and vibrational motion – Torque – angular momentum – Angular impulse – moment of inertia – radius of gyration – dimensions and units of moment of inertia – Analogous parameters in translational and Rotational motion.	
Simple Harmonic Motion	
Composition of two simple harmonic motions in a straight line – Composition of two simple harmonic motions of equal time periods at right angles – Lissajous Figures – Experimental methods – Uses of Lissajous Figures	
Unit III	17 hrs
Elasticity	
Elasticity – Three types of elastic moduli and relation between them – Poisson's ratio – Bending of beams – Expression for bending moment – Depression of the loaded end of a Cantilever – uniform – non uniform bending – theory – experiment – pin and microscope method – work done in uniform bending – Koenig's method – non-uniform bending – theory – expression for couple per unit twist – determination of rigidity modulus – Static torsion method with scale and telescope – Rigidity modulus by torsion pendulum with mass – I section girders.	
Unit IV	17 hrs
Viscosity and Surface tension	
Viscosity – Poiseuille's formula for the flow of a liquid through a capillary tube – corrections – Poiseuille's method to determine the coefficient of viscosity of liquid – Ostwald's viscometer – variation of viscosity with temperature and pressure – Searle's viscometer (rotating cylinder method). Effect of temperature on brake oils in cars.	
Surface tension – work done in increasing the area of the surface – work done in blowing a bubble- experimental determination of surface tension – Jaeger's method- Quincke's method – variation of surface tension with temperature – drop weight method- experimental determination of interfacial tension between water and kerosene.	
Unit V	18 hrs
Sound	
Velocity of transverse waves along stretched string – Laws of transverse vibration of strings – Melde's experiment – Siren – Determinations of frequency of a tuning fork by revolving drum method and phonic stroboscopic method – Means of Lissajous method	
Acoustics – Reverberation – Sabine's reverberation formula – Determination of absorption coefficient. Ultrasonics – properties – production – Galton whistle – Magnetostriction oscillator – Piezo-electric oscillator- detection and application.	
Importance of Industry 4.0 in Physics.	

Text Books

S.No	Authors	Title of the Book	Publishers	Year of Publication	Edition
1	Murugeshan.R	Mechanics and Mathematical Methods	S.Chand& Co Ltd, New Delhi	2006	Reprint
2	Mathur D.S	Mechanics	S. Chand &Co Ltd, New Delh	2012	2 nd Edition
3	R.Murugesan	Properties of Matter	S.Chand and Company Pvt Ltd	2013	11 th edition
4	Saighal.R.L	Textbook of Sound	S.Chand&Co Ltd	1998	2 nd Edition
5	P. Kaliraj, T. Devi	Higher Education for Industry 4.0 and Transformation to Education 5.0			

Reference Books

S.No	Authors	Title of the Book	Publishers	Year of Publication	Edition
1	Bhargava& Sharma	A Text Book of Mechanics	Ratan Prakashan Mandir	1990	7 th Edition
2	Brijlal Subramanyam	Properties of Matter	S. Chand and Company Pvt Ltd	1995	3 rd Edition
3	Murugesan. R	Properties of matter, Sound and thermal physics	S. Chand & Co Ltd	2011	1 st Edition

Pedagogy

Chalk and Talk lectures, Group Discussion, Seminar, Interaction, power point presentation, Weblinks, NPTEL Lectures.

Course Designers

1. Dr.M.Lavanya

PS23CP1	CORE PRACTICALS I	Category	L	T	P	Credit
			-	-	3hrs/week	-

Preamble

This course introduces students to the methods of experimental physics. Emphasis will be given on laboratory techniques such as accuracy of measurements and data analysis. The concepts that are learnt in the lecture sessions will be translated to the laboratory sessions thus providing a hands-on learning experience such as in measuring the basic concepts in properties of matter, Sound, Heat, Optics, Electricity and Magnetism.

Course Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1.	Apply knowledge of mathematics and physics fundamentals and an instrumentation to arrive solution for various problems.	K2
CLO2.	Understand the usage of basic laws and theories to determine various properties of the materials given.	K2
CLO3.	Understand the application side of the experiments	K2
CLO4.	Use standard methods to calibrate the given low range voltmeter and ammeter and to measure resistance of the given coil and various physical quantities.	K3
CLO5.	Use of basic laws to study the spectral properties and optical properties of the given prism.	K3

Mapping with Programme Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	L	L	L	L
CLO2	S	S	S	S	M	M
CLO3	S	S	S	S	M	M
CLO4	S	S	S	S	M	M
CLO5	S	S	S	S	M	M

S- Strong; M-Medium; L-Low

Syllabus

List of Experiments

1. Determination of Young's Modulus of the given rectangular beam by Non Uniform bending using Optic lever.
2. Determination of Young's Modulus of the given rectangular beam by Uniform bending using pin and microscope.
3. Determination of Rigidity modulus of the material of the given rod by using Static torsion apparatus.
4. Determination of Rigidity modulus of the material of the suspension wire using Torsion pendulum.
5. Determination of Moment of Inertia of the given disc by torsional oscillations.
6. Determination of frequency of AC mains using Sonometer.
7. Determination of Acceleration due to gravity using Compound pendulum.
8. Determination of thermal conductivity of the given bad conductor using Lee's disc method.
9. Determination of Refractive index of the given solid prism using Spectrometer
10. Determination of Refractive index of a liquid using hollow prism - Spectrometer
11. Determination of wavelength of prominent lines of mercury spectrum using grating by minimum deviation method using Spectrometer
12. Calibration of a low range voltmeter using Potentiometer
13. Calibration of a low range ammeter using Potentiometer
14. Determination of unknown resistance of the given coil of wire using potentiometer.
15. Determination of Moment of a magnet using deflection magnetometer by Tan C method.
16. Determination of B_H by measuring the field along the axis using deflection magnetometer.
17. Determination of Temperature co-efficient of resistance of a Thermistor using Wheatstone's bridge.
18. Determination of Spring Constant of different metals.
19. Determination of frequency of tuning fork using Melde's apparatus.
20. Determination of Planck's constant using different LEDs.

Pedagogy:

Demonstration and practical sessions

Course Designers:

1. Dr. P. Meena
2. Dr. G. Praveena

PS23A01	ALLIED PHYSICS PAPER- I (For Chemistry)	Category	L	T	P	Credit
		III	58	2	-	4

Preamble

This paper introduces the students to the basic concepts of Elasticity, Rotational motion, Heat and thermodynamics, Sound, Optics, Atomic and Nuclear Physics

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Define the fundamental concepts of material properties, heat, sound, optics, atomic and nuclear physics	K1
CLO2	Demonstrate the practical concepts behind the optics, heat and sound through experimental setup	K2
CLO3	Apply the fundamental properties and the associated laws to understand physical systems	K2
CLO4	Analyze the thermo dynamical, optical properties of matter and to find its applications in various fields	K3

Mapping with Programme Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	S	M	L	L
CLO2	S	M	S	M	S	L
CLO3	S	M	S	L	M	S
CLO4	S	M	S	S	S	S
CLO5	S	M	S	M	S	M

S- Strong; M-Medium; L-Low

Syllabus

Unit – I **11 Hrs**

Properties of Matter

Elasticity: Moduli of elasticity – bending moment-expression – Young's modulus by uniform and non-uniform bending – theory and experiment- I-section girders – Torsion pendulum – couple per unit twist – work done in twisting – determination of the rigidity modulus of the material of the wire.

Unit - II **12 Hrs**

Transmission of Heat

Conduction process: Thermal conductivity – Rectilinear field along a bar – Measurement of Thermal conductivity of a bad conductor by Lee's disc method

Convection process: Lapse rate – stability of atmosphere – Green house effect

Radiation process: Solar constant – Pyrheliometer – solar energy and its applications (flat plate collector & solar cooker) – concentration solar collector, Fresnel Lenses method.

Unit - III**11 Hrs****Thermodynamics, Sound:**

Thermodynamics: Thermodynamic variables – Extensive and Intensive variables – Maxwell's Thermodynamic relation – Thermodynamic potential – Significance – relation of thermodynamics potentials with their variables

Ultrasonics: Piezo electric & Magnetostriction method – Principle – Construction – Working and Applications.

Unit - IV**12 Hrs****Optics:**

Dispersion: Dispersive power-combination of prisms to produce (i) deviation without dispersion (ii) dispersion without deviation – direct vision spectroscope.

Interference: Air wedge – determination of diameter of a wire – Newton's rings-determination of refractive of a liquid

Polarization: Production, detection and analysis of different types of polarized light – quarter and half wave plates

Unit - V**12Hrs**

Atomic Physics: Vector atom model – Quantum numbers associated with vector atom model – Pauli's exclusion principle – excitation and ionization potential – experimental determination – **Franck and Hertz method.**

Nuclear Physics: Elementary particles – classification – particles and antiparticles –conservation laws and symmetry – Quark model.

Books for Study:

S. No	Authors	Title of the Book	Publishers	Year of Publication
1	Brijjal Subramanium	Heat and thermodynamics	S.Chand and Co, 16 th Edition.	2012
2	Brijjal Subramanium & Hemne.P.S,	Heat thermodynamics and Statistical Physics	S.Chand and Co, 12 th edition	2011
3	Brijjal Subramanium	Optics	S.Chand and Co, 21 st Edition	2012
4	Murugeshan R	Allied Physics	S.Chand and Co, 1 st Edition	1998

Books for Reference:

S. No	Authors	Title of the Book	Publishers	Year of Publication
1	Jayaprakash. N	Heat and thermodynamics	S Chand and Co, 16 th Edition.	2012

2	Mathur D.S	Properties of Matter	S Chand and Co, 2 nd Edition	1970
3	Murugesan R	Modern Physics	S.Chand and Co , 9 th edition	2013

Pedagogy

Chalk and talk, PPT, Seminar, Group discussion, Interaction

Course Designers:

1. Mrs.S.Sowmya

References For E-Content:

1. <https://youtu.be/qQhOYbztNIQ>
2. <https://youtu.be/gcI-bkr7lg>
3. <https://youtu.be/7tr4qWPgP40>
4. https://youtu.be/N5GAHntU_nQ
5. <https://youtu.be/hDP6egLrsdM>
6. <https://youtu.be/nmsPcTzIkqw>
7. <https://youtu.be/rAhvvyQBUt0>
8. <https://youtu.be/TUaTNzZ00oM>
9. <https://youtu.be/tDB3zP9MEZc>
10. <https://youtu.be/wvI0QAQCJyc>
11. <https://youtu.be/4nbBAG-848c>
12. https://youtu.be/nJXB0yD_wEw
13. https://youtu.be/K4Do_yWJt2k
14. <https://youtu.be/HH58VmUbOKM>
15. <https://youtu.be/DjnDX28l4xA>
16. <https://youtu.be/iVYGOWAtZCQ>
17. <https://youtu.be/SQtOYCei-Pc>
18. <https://youtu.be/kykp-S8S5dU>

PS23AP1	ALLIED PHYSICS PRACTICALS (For I BSc Chemistry Sem I and II and II BSc Mathematics Sem III and IV)	Category	L	T	P	Credit
		III	-	-	3 Hrs / week	3

Preamble

To enable the student to gain practical knowledge

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1.	Gain knowledge in the scientific methods and learn the process of measuring different Physical variables	K1
CO2.	Educate The Basics Of Instrumentation, Data Acquisition And Interpretation of Results	K2
CO3.	Enhance The Students Understand The Concepts In Materials Properties	K2
CO4.	Have a deep knowledge of fundamentals of optics, electric circuits, magnetism and sound	K3

Mapping with Programme Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1.	S	S	S	S	M	S
CO2.	S	S	S	S	S	S
CO3.	S	M	S	M	M	M
CO4.	S	M	M	S	M	S
CO5.	S	S	S	S	M	S

S- Strong; M-Medium; L-Low

Syllabus

List of Experiments

Any Eighteen

1. Young's Modulus –Non- Uniform bending –Pin and Microscope
2. Young's Modulus – Uniform bending – Optic lever
3. Rigidity modulus - Static torsion
4. Rigidity Modulus - torsional pendulum
5. Moment of inertia - torsional pendulum
6. Acceleration due to gravity - compound pendulum
7. Thermal conductivity of a bad conductor – Lee's disc method
8. AC frequency - Sonometer
9. Refractive index of solid prism - spectrometer
10. Refractive index of liquid-Hollow prism - spectrometer
11. Wave length- Grating - Minimum deviation method - Spectrometer
12. Low range Ammeter Calibration - Potentiometer
13. Low range Voltmeter Calibration - Potentiometer
14. Moment of a magnet in the Tan C position
15. Volt-Ampere characteristic of a p-n junction diode in the forward and reverse directions
16. Logic gates - Verification of the truth table
17. Characteristics of Zener diode
18. Closed loop gain of Operational Amplifier in Inverting mode
19. Closed loop gain of Operational Amplifier in Non Inverting mode.

Pedagogy

Demonstration and Practical Sessions

Course Designers:

1. Mrs. T. Poongodi

PS23C02	HEAT AND THERMODYNAMICS	Category	L	T	P	Credit
		III	86	4	-	6

Preamble

The aim of this course is to acquire knowledge in heat transfer, entropy, production of low temperature and liquefaction of gases, thermal radiation and statistical thermodynamics.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1.	Understand the central concepts and basic idea on specific heat, entropy, quantum theory of radiation	K2
CLO2.	Apply the concepts of low temperature physics in liquefaction of gases	K3
CLO3.	Use the tools needed to formulate and solve problems in thermodynamical systems such as gases, heat engines etc	K3
CLO4.	Become familiarize with the concepts of thermodynamical potentials.	K3
CLO5.	Distinguish the particles based on the concepts and principles of Statistical Physics	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	M	M	S	S	M	S
CLO2	S	S	S	S	M	S
CLO3	S	S	S	M	M	S
CLO4	S	S	S	S	L	S
CLO5	S	S	S	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

Unit I

18 Hrs

Kinetic theory of gases

Postulates of kinetic theory of gases – derivation of expression for pressure exerted by gas - Maxwell's Law of Distribution of Velocities (no derivation), Mean Free Path - Brownian motion – Langevin's theory of Brownian motion – Einstein's theory of Brownian motion – degree's of freedom – Maxwell's law of equipartition of energy - van der Waal's equation of state – critical constants – experimental determination of critical constants.

Quantum Theory of Specific Heat

Specific heat of solids - Dulong and Petits law and the deduction – failure of Dulong and Petit's law – Einstein's theory and its limitation – Debye theory of specific heat of solids – specific heat of gases – Variation of specific heat of diatomic gases with temperature – applications of high specific heat capacity of water.

Unit II **17 Hrs**

Low Temperature Physics

Methods of production of low temperatures – Expression for temperature inversion – Principle of regenerative cooling - Joule Thomson effect – Porous plug experiment – its theory and result – Joule Thomson effect for perfect and real gases –Liquefaction of Hydrogen & Helium – Helium I and Helium II -Lambda point - super fluidity – adiabatic demagnetization – application in refrigerators and deep freezers.

Unit III **16 Hrs**

Thermal Physics

Quantum theory of radiation- Planck's hypothesis – average energy of Planck's oscillator – Planck's radiation law and its experimental verification -Derivation of Planck's law– Derivation of Wein's law and Rayleigh-Jean's from Planck's law – Stefan's and Wein's displacement laws from Planck's law –Room heaters and radiators in cars - solar thermal system (water heater)

Unit IV **18 Hrs**

Laws of Thermodynamics and Entropy

First law of thermodynamics and it's consequences – Isothermal and adiabatic processes – reversible, irreversible and quasi-static processes – second law and entropy - physical significance of entropy - Entropy of a perfect gas - Thermo dynamic potentials- internal energy (U)- Helmholtz function (F)- Gibb's function (G) and enthalpy (H) – significance of thermodynamic potentials - Maxwell's thermodynamics relation – the $(T_p - dS)$ equation – Clapeyron's latent heat equation using Maxwell's thermodynamics relation – understanding entropy in steam engines.

Unit V **17 Hrs**

Statistical Physics

Probability- Macrostate and microstate – phase space – thermodynamic probability – Ensembles – Kinds of Ensembles(concepts only) – Maxwell's Boltzmann distribution law- Maxwell's Boltzmann distribution in terms of temperature – quantum statistics – Bose Einstein distribution law – Fermi - Dirac distribution law – Comparison of three statistics.

Text Books

S. No	Authors	Title of the Book	Publishers	Year of Publication	Edition
1	Brijlal N Subrahmanyam P.S.Hemne	Heat Thermodynamics and Statistical Physics and applications	S. Chand	2012	3 rd edition
2	R.Murugesan Er. KiruthigaSivaprasath	Thermal Physics	S.Chand	2012	3 rd edition

Reference Books

S. No	Authors	Title of the Book	Publishers	Year of Publication	Edition
1	A.B Gupta H.P. Roy	Thermal Physics	Arunabha Sen	2005	1 st edition
2	Agrawal Prakash	Thermal Physics	PragatiPrak ashan	2015	27 th edition
3	Agrawal Prakash	Thermodynamics and Statistical Physics	PragatiPrak ashan	2015	27 th edition

Pedagogy

Chalk and talk, PPT, Seminar, Group discussion, Interaction, Weblinks, NPTEL Lectures.

Course Designers

1. Dr. G. Praveena

PS23A02	ALLIED PHYSICS PAPER- II (For Chemistry)	Category	L	T	P	Credit
		III	71	5	-	4

Preamble

This paper introduces the student to the basic concepts of AC Circuits, Magnetic materials, electronics and digital electronics

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Explore the fundamental concepts of physics	K1
CLO2	Import knowledge about the importance of material properties, heat, sound, optics, atomic and nuclear physics.	K2
CLO3	Understand the energy involved in nuclear reaction	K2
CLO4	Carry out the practical by applying these concepts	K3
CLO5	Get depth knowledge of physics in day today life	K3

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	S	M	L	L
CLO2	S	M	S	M	S	L
CLO3	S	M	S	L	M	S
CLO4	S	M	S	S	S	S
CLO5	S	M	S	M	S	M

S- Strong; M-Medium; L-Low

Syllabus

Unit – I **14 Hrs**

Alternating currents:

Mean and RMS values of AC -Series and parallel resonant circuits-Power factor- power factor of an ac circuit containing resistance, inductance and capacitance -Transformer-

construction- working-losses.

Unit – II **14 Hrs**

Magnetic materials:

Magnetic Induction – Magnetization – Relation between the three magnetic vectors B, H and M – Magnetic susceptibility – Properties - diamagnetic – paramagnetic – ferromagnetic – anti ferromagnetism and ferrimagnetism – Electron theory of magnetism — Weiss's theory of ferromagnetism - energy loss in hysteresis – importance of hysteresis curves.

Unit – III **14 Hrs**

Semiconductor Diodes: P and N type semiconductors - PN Junction Diode - Current Flow Mechanism in Forward and Reverse Biased Diode - Zener Diode and Voltage Regulation - Principle and structure of (1) LEDs (2) Photodiode (3) Solar cell - Transistor – Characteristics of CB, CE and CC Configuration – Transistor biasing – Voltage divider biasing.

Unit - IV **14 Hrs**

Two - terminal Devices and their Applications: Rectifier Diode: Half- wave Rectifiers - Bridge Full-wave Rectifiers, Calculation of Ripple Factor and Rectification Efficiency - **Amplifiers:** Single stage amplifier (CE) - **Sinusoidal Oscillators:** Barkhausen's Criterion for self - sustained oscillations - RC Phase shift oscillator, determination of Frequency- Hartley oscillator.

Unit – V **15 Hrs**

Digital Electronics:

Boolean algebra-DeMorgan's theorem-OR, AND, NOT, XOR NOR and NAND gates-NOR andNAND gates as universal building blocks-half adder, full adder-RS flip flop-JK flip flop Operational amplifier: Characteristics-virtual ground-summing point-inverting and non invertingamplifier-adder-subtractor.

Text Book

S.No	Authors	Title of the Book	Publishers	Year of Publication	Edition
1	R. Murugesan	Electricity and Magnetism	S.Chand and Co	2005	Revised Edition
2	V.K. Metha	Principles of electronics	S.Chand and Co	1980	1 st Edition
3	Murugesan R	Allied Physics	S.Chand and Co	2005	1 st edition

Reference Books

S.No	Authors	Title of the Book	Publishers	Year of Publication	Edition
1	V. Vijayendran	Introduction to Integrated Electronics	Viswanathan Publishers	2005	1 st Edition

Pedagogy

Chalk and Talk lectures, Group Discussion, Seminar, Interaction, Power Point Presentation

Reference Links:

1. Mean and RMS values of AC - <https://www.youtube.com/watch?v=qDHsokTcgck>
2. Series & Parallel Resonant Circuits - <https://www.youtube.com/watch?v=G8KLJjq1E2o>
3. Transformer | Principle, Construction, Working and Efficiency - <https://www.youtube.com/watch?v=i29dCoSGa38>
4. Magnetization - <https://www.youtube.com/watch?v=C-OoUvKXbLU&t=2s>
5. Diamagnetic – paramagnetic – ferromagnetic - https://www.youtube.com/watch?v=wK7Jr1g4_ws
6. P and N type semiconductors - <https://www.youtube.com/watch?v=5ZNeDxfgYAE>
7. Different types of diodes - <https://www.youtube.com/watch?v=-EqOEiEQGLI>
8. Diode rectifier circuits - <https://www.youtube.com/watch?v=Xmu31a-59vw>
9. Single stage amplifier - <https://www.youtube.com/watch?v=NEiVSbPYWNE>
10. RC Phase Shift Oscillator - <https://www.youtube.com/watch?v=Gvb4GIV5ig8>
11. Hartley Oscillator - https://www.youtube.com/watch?v=3B_sBX_11Zw
12. Boolean Algebra and Logic gates - <https://www.youtube.com/watch?v=JQBRzsPhw2w>
13. Flip-flop - <https://www.youtube.com/watch?v=LTtuYeSmJ2g>
14. Operational amplifier - <https://www.youtube.com/watch?v=jsKSfaFQ4d4>

Course Designers

1. Dr. G. Praveena

PS23CP1	CORE PRACTICALS I	Category	L	T	P	Credit
		III	-	-	3hrs/week	4

Preamble

This course introduces students to the methods of experimental physics. Emphasis will be given on laboratory techniques such as accuracy of measurements and data analysis. The concepts that are learnt in the lecture sessions will be translated to the laboratory sessions thus providing a hands-on learning experience such as in measuring the basic concepts in properties of matter, Sound, Heat, Optics, Electricity and Magnetism.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1.	Apply knowledge of mathematics and physics fundamentals and an instrumentation to arrive solution for various problems.	K2
CLO2.	Understand the usage of basic laws and theories to determine various properties of the materials given.	K2
CLO3.	Understand the application side of the experiments	K2
CLO4.	Use standard methods to calibrate the given low range voltmeter and ammeter and to measure resistance of the given coil and various physical quantities.	K3
CLO5.	Use of basic laws to study the spectral properties and optical properties of the given prism.	K3

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	L	L	L	L
CLO2	S	S	S	S	M	M
CLO3	S	S	S	S	M	M
CLO4	S	S	S	S	M	M
CLO5	S	S	S	S	M	M

S- Strong; M-Medium; L-Low

Syllabus

List of Experiments (any 16)

1. Determination of Young's Modulus of the given rectangular beam by Non Uniform bending using Optic lever.
2. Determination of Young's Modulus of the given rectangular beam by Uniform bending using pin and microscope.
3. Determination of Rigidity modulus of the material of the given rod by using Static torsion apparatus.
4. Determination of Rigidity modulus of the material of the suspension wire using Torsion pendulum.
5. Determination of Moment of Inertia of the given disc by torsional oscillations.
6. Determination of frequency of AC mains using Sonometer.
7. Determination of Acceleration due to gravity using Compound pendulum.
8. Determination of thermal conductivity of the given bad conductor using Lee's disc method.
9. Determination of Refractive index of the given solid prism using Spectrometer
10. Determination of Refractive index of a liquid using hollow prism - Spectrometer
11. Determination of wavelength of prominent lines of mercury spectrum using grating by minimum deviation method using Spectrometer
12. Calibration of a low range voltmeter using Potentiometer
13. Calibration of a low range ammeter using Potentiometer
14. Determination of unknown resistance of the given coil of wire using potentiometer.
15. Determination of Moment of a magnet using deflection magnetometer by Tan C method.
16. Determination of B_H by measuring the field along the axis using deflection magnetometer.
17. Determination of Temperature co-efficient of resistance of a Thermistor using Wheatstone's bridge.
18. Determination of Spring Constant of different metals.
19. Determination of frequency of tuning fork using Melde's apparatus.
20. Determination of Planck's constant using different Leds.

Pedagogy:

Demonstration and practical sessions

Course Designers:

1. Dr. P. Meena
2. Dr. G. Praveena

PS23C03	ELECTRICITY AND MAGNETISM	Category	L	T	P	Credit
		THEORY	58	2	-	4

Preamble

The aim of this course is i) to acquire in-depth knowledge in electrostatics and magnetostatics so that students would apply theories of static and moving charges and extend its applications to instruments involving electric and magnetic fields and ii) to give idea on the fundamentals of electromagnetic conduction and electromagnetic waves.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO 1	Recall the basic knowledge of scalar, vector fields, AC/DC circuits and electromagnetic wave.	K1
CLO 2	Understand the concept of different laws in electrostatics, generation of currents and the variation of current in magnetic field.	K2
CLO 3	Apply theorems to construct and solve electrical circuits.	K3
CLO 4	Analyze the generation of magnetic fields by electrical currents through circuital laws.	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO 1	M	M	S	S	M	S
CLO 2	S	M	S	S	M	S
CLO 3	S	M	S	S	S	S
CLO 4	S	M	S	S	S	S

S- Strong; M-Medium;

Syllabus

Unit I

12 Hrs

Vector Analysis:

Scalar and Vector fields, **gradient of a scalar field, divergence of a vector field, Curl of a vector field and their physical significance**^{1,2,3,4}, Vector Integration, Line, surface and volume integrals of Vector fields, Gauss divergence theorem and Stoke's theorem of vectors (Statement and proof only)

Electrostatic Field:

Electric field, Continuous charge distribution, **Divergence and curl of electrostatic fields; Field lines, flux**^{5,6} and Gauss' law statement and its proof, applications of Gauss's law – uniformly

charged spherical shell and conducting sphere, infinite line of charge, uniform infinite cylindrical charge and infinite plane sheet of charge, **Coulomb's Law**^{7,8}.

Unit II **12 Hrs**

Electric potential:

Introduction to potential, Comments on potential^{9,10}, Poisson's and Laplace's equations, Potential of a localized charge distribution, electrostatic boundary value problems – Uniqueness theorem

Electrical Images:

Solution of field problems in case of a point charge near a grounded conducting infinite plane. Boundary value problems: in uniform external field for (1) insulated Conducting Sphere (2) conducting spherical shell and (3) dielectric sphere^{11,12,13}.

Unit III **11 Hrs**

DC currents:

Growth and decay of charge in series RC circuit, **Growth and decay of current in series LR circuit**¹⁴, Growth and Decay of charge in series LCR circuit - **Damped, under-damped and over-damped conditions**

AC Circuits:

Series resonance circuit- Parallel LCR Circuit – Complex form of LCR circuits- j operator method - Characteristics of LCR Circuit: (1) Resonance, (2) Quality Factor, (3) Band Width and (4) Sharpness of Resonance - power consumed by the above circuits.

Unit IV **12 Hrs**

Magnetic Field:

Magnetic force between current elements and definition of Magnetic Field **B**. Biot-Savart's Law and its simple applications: long straight wire and **circular loop**¹⁵. Current Loop as a Magnetic Dipole and its Dipole Moment (Analogy with Electric Dipole). Ampere's Circuital Law and its application to (1) Solenoid and (2) **Toroid**. **Properties of B: curl and divergence**^{15,16,17}. Differential form of Ampere's circuital law- Magnetic scalar and Vector Potential -Importance.

Unit V **11 Hrs**

Electromagnetic waves:

Equation of continuity – Displacement current – Significance of displacement current – Derivation of Maxwell's equations – Maxwell's equations in integral form - **Differential form – Plane electromagnetic waves – Transverse nature of electromagnetic waves**^{18,19,20} - Maxwell's equations in free space-Electromagnetic waves in free space- Poynting theorem (Statement and Proof)

Text Books

S. No	Authors	Title of the Book	Publishers	Year of Publication	Edition
1	R. Murugesan	Electricity and Magnetism	S. Chand & Co Pvt Ltd	2019	8 th Edition
2	Dr. K. K. Tewari	Electricity and Magnetism	S. Chand & Co Pvt Ltd	2016	Revised Edition
3	Brijlal and N. Subrahmanyam	Electricity and Magnetism	S. Chand & Co Pvt Ltd	2017	18 th Edition

Reference Books

S. No	Authors	Title of the Book	Publishers	Year of Publication	Edition
1	David J Griffith	Electrodynamics	Prentice Hall	2015	4 th Edition
2	Edward M. Purcell	Electricity and Magnetism, Berkeley Physics Course – Volume 2	Tata Mc-Graw Hill Education	2013	3 rd Edition
3	D C Tayal	Electricity and Magnetism	Himalaya Publishing House	2009	Revised edition
4	Sehgal, Chopra, Sehgal	Electricity and Magnetism	S. Chand and sons	2020	2 nd edition
5	A S Mahajan, A A Rangwala	Electricity and Magnetism	S. Chand and sons	2017	6 th edition

Pedagogy

Chalk and talk, PPT, Seminar, Group discussion, Interaction

Course Designer

1. Dr.N.Priyadharsini

References For E-Content

1. <https://www.youtube.com/watch?v=W8N8XswNei8>
2. <https://www.youtube.com/watch?v=gLsoAjuRWCw>
3. <https://www.youtube.com/watch?v=SZCsFS9izfQ>
4. <https://www.youtube.com/watch?v=v3ZC4Mo1fS0>
5. <https://www.youtube.com/watch?v=VBCzo91uUi8>
6. https://www.youtube.com/watch?v=_4VC3IHbuW8
7. <https://www.youtube.com/watch?v=2GQTfpDE9DQ>
8. <https://www.youtube.com/watch?v=rYjo774UpHI>
9. https://www.youtube.com/watch?v=j3GrOKre_0
10. <https://www.youtube.com/watch?v=PEcPcNMfNks>
11. https://www.youtube.com/watch?v=_SakEHbtryA
12. <https://www.youtube.com/watch?v=jippPv6Gz14>
13. <https://www.youtube.com/watch?v=7YbLDlbv17w>
14. <https://www.youtube.com/watch?v=04THKYsONKA>
15. https://www.youtube.com/watch?v=I8X1EpH_VQY
16. <https://www.youtube.com/watch?v=sFre-bMvBeI>
17. <https://www.youtube.com/watch?v=yr0RkoUHgf0>
18. <https://www.youtube.com/watch?v=CX7X6YrVUdk>
19. <https://www.youtube.com/watch?v=pn9yxCxzJfY>
20. <https://www.youtube.com/watch?v=HvK35jjMb5I>

PS23CP2	PHYSICS PRACTICALS II	Category	L	T	P	Credit
		PRACTICAL	-	-	3 hrs/Week	2

Preamble

This course introduces students to the methods of experimental physics. Emphasis will be given on laboratory techniques such as accuracy of measurements and data analysis. The concepts that are learnt in the lecture sessions will be translated to the laboratory sessions thus providing a hands-on learning experience such as in measuring the basic concepts in properties of matter, heat, optics, electricity and electronics.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Understand the usage of basic laws and theories to determine various properties of the materials given.	K2
CLO2	Understand the application side of the experiments.	K2
CLO3	Apply knowledge of mathematics and physics fundamentals and an instrumentation to arrive solution for various problems.	K3
CLO4	Use standard methods to calibrate the given high range voltmeter and to measure the elasticity and thickness of the given material.	K3
CLO5	Use of basic laws to study the spectral properties and optical properties of the given prism and grating.	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	L	L	L	L
CLO2	S	S	S	S	M	M
CLO3	S	S	S	S	M	M
CLO4	S	S	S	S	M	M
CLO5	S	S	S	S	M	M

S- Strong; M-Medium; L-Low

Syllabus

List of Experiments

Any 16

1. Young's Modulus – Uniform Bending – Koenig's Method
2. i-d curve- μ of the prism-Spectrometer
3. Dispersive Power of Grating – Spectrometer- Wave length of Mercury Spectral Lines by minimum deviation method
4. Refractive index (μ) of the material of the prism lens – Newton's rings method
5. Calibration of High Range Voltmeter –Potentiometer
6. Wave length of Mercury Spectral Lines – Grating - Normal Incidence –Spectrometer
7. Young's Modulus –Non-Uniform Bending – Koenig's Method
8. Thickness of a thin wire – Air Wedge method
9. EMF of thermocouple –Potentiometer
10. High resistance by i) Charging ii) Leakage using Ballistic Galvanometer
11. Comparison of Mutual Inductance's – Ballistic Galvanometer
12. Measurement of dielectric constant - Parallel Plate Capacitor Method
13. Series Resonant Circuit
14. Parallel Resonant Circuit
15. i) Verification of Truth Tables of IC Gates: OR, AND, NOT, XOR, NOR, and NAND
ii) Verification of Demorgan's theorem using Logic Gates
16. Verification of Truth Table of Half and Full Adders
17. Verification of NAND as a Universal Building Block
18. Verification of NOR as a Universal Building Block
19. Verification of Truth Tables of Half and Full Subtractor

Pedagogy

Demonstration

Course Designer

1. Dr.M.Lavanya

PS23A03	ALLIED PHYSICS PAPER- I (For Mathematics)	Category	L	T	P	Credit
		THEORY	58	2	-	4

Preamble

This paper introduces the students to the basic concepts of Elasticity, Rotational motion, Heat and thermodynamics, Sound, Optics, Atomic and Nuclear Physics

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Define the fundamental concepts of material properties, heat, sound, optics, atomic and nuclear physics	K1
CLO2	Demonstrate the practical concepts behind the optics, heat and sound through experimental setup	K2
CLO3	Apply the fundamental properties and the associated laws to understand physical systems	K2
CLO4	Analyze the thermo dynamical, optical properties of matter and to find its applications in various fields	K3

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	S	M	L	L
CLO2	S	M	S	M	S	L
CLO3	S	M	S	L	M	S
CLO4	S	M	S	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

Unit – I

11 Hrs

Properties of Matter

Elasticity: Moduli of elasticity^{1,2}- bending moment-expression – Young's modulus by uniform and non-uniform bending-theory and experiment³- I-section girders-Torsion pendulum-couple per unit twist-work done in twisting –determination of the rigidity modulus of the material of the wire.

Unit - II

11 Hrs

Transmission of Heat

Conduction process: Thermal conductivity^{4,5}- Rectilinear field along a bar- Measurement of Thermal conductivity of a bad conductor by Lee's disc method

Convection process: Lapse rate-stability of atmosphere- Green house effect

Radiation process: Solar constant- Pyroheliometer- solar energy and its applications (flat plate collector & solar cooker)^{6,7,8,9,10} - concentration solar collector, Fresnel Lenses method.

Unit - III**11 Hrs****Thermodynamics, Sound:**

Thermodynamics: Thermodynamic variables – Extensive and Intensive variables- Maxwell's Thermodynamic relation- Thermodynamic potential- Significance- relation of thermodynamics potentials with their variables

Ultrasonics: Piezo electric & Magnetostriction method – Principle- Construction – Working and Applications^{11,12,13}.

Unit - IV**11 Hrs****Optics:**

Dispersion: Dispersive power-combination of prisms to produce (i) deviation without dispersion (ii) dispersion without deviation-direct vision spectroscope.

Interference: Air wedge-determination of diameter of a wire-Newton's rings-determination of refractive of a liquid

Polarisation: Production, detection and analysis of different types of polarized light-quarter and half wave plates^{14,15,16}

Unit - V**12Hrs**

Atomic Physics: Vector atom model¹⁷ -Quantum numbers associated with vector atom model -Pauli's exclusion principle-excitation and ionization potential-experimental determination-**Franck and Hertz method**¹⁷.

Particle Physics: Elementary particles – classification¹⁸- particles and antiparticles- conservation laws and symmetry- Quark model.

Books for Study:

S. No	Authors	Title of the Book	Publishers	Year of Publication
1	Brijal Subramanium	Heat and thermodynamics	S.Chand and Co, 16 th Edition.	2012
2	Brijal Subramanium & Hemne.P.S,	Heat thermodynamics and Statistical Physics	S.Chand and Co, 12 th edition	2011
3	Brijal Subramanium	Optics	S.Chand and Co, 21 st Edition	2012
4	Murugeshan R	Allied Physics	S.Chand and Co, 1 st Edition	1998

Books for Reference:

S. No	Authors	Title of the Book	Publishers	Year of Publication
1	Jayaprakash. N	Heat and thermodynamics	S Chand and Co, 16 th Edition.	2012
2	Mathur D.S	Properties of Matter	S Chand and Co, 2 nd Edition	1970
3	Murugesan R	Modern Physics	S.Chand and Co , 9 th edition	2013

Pedagogy

Chalk and talk, PPT, Seminar, Group discussion, Interaction

Course Designers:

1. Dr.G.Vanitha

References For E-Content:

1. <https://youtu.be/qQhOYbztNIQ>
2. <https://youtu.be/gcI-bkr7ilg>
3. <https://youtu.be/7tr4qWPgP40>
4. https://youtu.be/N5GAHntU_nQ
5. <https://youtu.be/hDP6egLrsdM>
6. <https://youtu.be/nmsPcTzIkzw>
7. <https://youtu.be/rAhvvyQBUt0>
8. <https://youtu.be/TUaTNzZ00oM>
9. <https://youtu.be/tDB3zP9MEZc>
10. <https://youtu.be/wvl0QAQCJyc>
11. <https://youtu.be/4nbBAG-848c>
12. https://youtu.be/nJXB0yD_wEw
13. https://youtu.be/K4Do_yWJt2k
14. <https://youtu.be/HH58VmUbOKM>
15. <https://youtu.be/DjnDX28I4xA>
16. <https://youtu.be/iVYGOWatZCQ>
17. <https://youtu.be/SQtOYCei-Pc>
18. <https://youtu.be/kykp-S8S5dU>

PS23AP1	ALLIED PHYSICS PRACTICALS (For I BSc Chemistry Sem I and II and II BSc Mathematics Sem III and IV)	Category	L	T	P	Credit
		PRACTICAL	-	-	3 Hrs/ week	3

Preamble

To enable the student to gain practical knowledge

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Gain knowledge in the scientific methods and learn the process of measuring different Physical variables	K1
CLO2	Educate The Basics Of Instrumentation, Data Acquisition And Interpretation of Results	K2
CLO3	Enhance The Students Understand The Concepts In Materials Properties	K2
CLO4	Have a deep knowledge of fundamentals of optics, electric circuits, magnetism and sound	K3

Mapping with Programme Learning Outcomes

CLO	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	S	S	M	S
CLO2	S	S	S	S	S	S
CLO3	S	M	S	M	M	M
CLO4	S	M	M	S	M	S

S- Strong; M-Medium;

Syllabus

List of Experiments Any Eighteen

1. Young's Modulus –Non- Uniform bending –Pin and Microscope
2. Young's Modulus – Uniform bending – Optic lever
3. Rigidity modulus - Static torsion
4. Rigidity Modulus - torsional pendulum
5. Moment of inertia - torsional pendulum
6. Acceleration due to gravity - compound pendulum
7. Thermal conductivity of a bad conductor – Lee's disc method
8. AC frequency - Sonometer
9. Refractive index of solid prism - spectrometer
10. Refractive index of liquid-Hollow prism - spectrometer
11. Wave length- Grating - Minimum deviation method - Spectrometer
12. Low range Ammeter Calibration - Potentiometer
13. Low range Voltmeter Calibration - Potentiometer
14. Moment of a magnet in the Tan C position
15. Volt-Ampere characteristic of a p-n junction diode in the forward and reverse directions
16. Logic gates - Verification of the truth table
17. Characteristics of Zener diode
18. Closed loop gain of Operational Amplifier in Inverting mode
19. Closed loop gain of Operational Amplifier in Non Inverting mode.

Pedagogy

Demonstration and Practical Sessions

Course Designers:

1. Mrs. T. Poongodi

COURSE CODE	COURSE NAME	CATEGORY	L	T	P	CREDIT
PS23C04	FUNDAMENTALS OF DIGITAL ELECTRONICS	Theory	58	2	-	4

Preamble

The aim of this course is to make students acquire knowledge about Boolean algebra, logic circuits, designing counters and the basic concepts of memory and programmable logic device.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Outline the fundamental concepts and techniques used in digital electronics.	K1
CLO2	Understand the various basic and complex digital circuits	K2
CLO3	Apply the acquired knowledge to build and troubleshoot digital circuits.	K3
CLO4	Design and analyze the working of digital circuits and system.	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	M	M	S	S
CLO2	S	S	S	S	S	S
CLO3	S	S	S	S	S	M
CLO4	S	S	S	M	S	M

S- Strong; M-Medium; L-Low

Syllabus

Unit I

Number Systems, Logic gates and Boolean algebra

12 Hrs

Number Systems-Binary-octal-Hexadecimal and its conversions-Binary Codes- BCD codes- 8421 code-Excess 3 code-Grey code -Logic gates – AND, OR, NOT, NAND, NOR gates – Boolean algebra- operators – logic expressions De-Morgan’s theorem – laws and rules of Boolean algebra – truth table – reducing Boolean expressions – Karnaugh maps – simplification of digital circuits - Ancient arithmetical operations.

Unit II

Arithmetic circuits and Flip flops

12 Hrs

Half adder- full adder – Parallel binary adder, half subtractor – full subtractor – Parallel binary Subtractor, parity generator – encoder – decoder.

Flip flop –NAND Latch- RS Flip Flop- Edge triggered RS Flip Flop, D and T Flip Flop - JK Flip Flop, Master Slave Flip Flop – Sequential circuit concepts in ancient India.

Unit – III**Registers and Counters****12 Hrs**

Registers – Shift Registers-Shift left and Shift right registers – Ring Counter – Johnson's Counter - Asynchronous / Ripple counters – modulus counter- Mod 3, 4, 5, 6, 7, 8 and 9 counters - Decade counter - Synchronous Counters.

Unit – IV**11 Hrs****A/D & D/A Converters**

Digital to Analog (D/A) converter- Binary weighted resistor method – R / 2R Ladder Network - Analog to Digital (A/D) Converter – counter type - Dual slope integrator – successive approximation A/D Converter.

Unit – V**11 Hrs****Semiconductor memory**

Read only memory – Random access memory – PROM – EPROM-SRAMs –DRAMs - Digital IC Characteristics –Resistor Transistor Logic (RTL) – Transistor Transistor Logic (TTL) – Schottky TTL – Emitter Coupled Logic (ECL).

Books for Study:

S.No	Authors	Title of the Book	Publishers	Year of Publication	Edition
1	Malvino & Leach	Digital principles and applications	Tata Mc Graw Hill	1995	5 th Edition
2	M. Morris Mano	Digital Logic & Computer Designs	Prentice Hall of India.	2014	4 th Edition
3	Vijayendran V	Introduction to Integrated electronics	S. Viswanathan (Printers & Publishers, Chennai)	2005	1 st Edition
4	Swami Sri Bharatikrishna tirthaji	Vedic Mathematics	Motilal Bararsidass	1998	1 st Edition

Books for Reference:

S.No	Authors	Title of the Book	Publishers	Year of Publication	Edition
1	Chatterji B.N	- Digital Computer technology	Khanna Publishers, Delhi	1986	2 nd Edition
2	Puri V K	Digital Electronics circuits and systems	Tata McGraw Hill Publishing Company Limited New Delhi	1997	1 st Edition

3	S Salivahanan S Arivazhagan	Digital Circuits and Design	Vikas Publishing House Private Limited	2007	3 rd Edition
4	Mahamahopadhyaya Ganganatha Jha	The Nyaya Sutras of Gautama	Motilal Bararsidass	1984	2 nd Edition

References For E-Content

<https://www.youtube.com/watch?v=A-gWV5liKxM>
<https://www.youtu.be/IeWcvAsz88o>
https://www.youtu.be/AzyG_wL3qMY
<https://youtu.be/sJXTo3EZoxM>
<https://youtu.be/DqCDQH44y9>
<https://youtu.be/feBvhLFQEDk>
<https://youtu.be/vu0wgiDlrRs>
<https://youtu.be/iaIu5SYmWVM>
<https://www.youtube.com/watch?v=SAcVlreweOc>
<https://www.youtube.com/watch?v=dpq1uqFcKnM>
<https://youtu.be/p4R0Ej6FCn0>
<https://youtu.be/nemTyWV5lv8>
https://youtu.be/r787m_IaR1I

Pedagogy

Chalk and Talk lectures, Seminar, Interaction, Power Point Presentation, E-content

Course Designer

Mrs. D. Niveditha

COURSE CODE	COURSE NAME	CATEGORY	L	T	P	CREDIT
PS23CP2	PHYSICS PRACTICALS II	Practical	-	-	3 hrs/ Week	4

Preamble

This course introduces students to the methods of experimental physics. Emphasis will be given on laboratory techniques such as accuracy of measurements and data analysis. The concepts that are learnt in the lecture sessions will be translated to the laboratory sessions thus providing a hands-on learning experience such as in measuring the basic concepts in properties of matter, heat, optics, electricity and electronics.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Understand the usage of basic laws and theories to determine various properties of the materials given.	K1, K2
CLO2	Understand the application side of the experiments.	K2
CLO3	Apply knowledge of mathematics and physics fundamentals and an instrumentation to arrive solution for various problems.	K3
CLO4	Use standard methods to calibrate the given high range voltmeter and to measure the elasticity and thickness of the given material.	K3
CLO5	Use of basic laws to study the spectral properties and optical properties of the given prism and grating.	K3

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	L	L	L	L
CLO2	S	S	S	S	M	M
CLO3	S	S	S	S	M	M
CLO4	S	S	S	S	M	M
CLO5	S	S	S	S	M	M

S- Strong; M-Medium; L-Low

Syllabus

List of Experiments

Any 16

1. Young's Modulus – Uniform Bending – Koenig's Method
2. i-d curve- μ of the prism-Spectrometer
3. Dispersive Power of Grating – Spectrometer- Wave length of Mercury Spectral Lines by minimum deviation method
4. Refractive index (μ) of the material of the prism lens – Newton's rings method
5. Calibration of High Range Voltmeter –Potentiometer
6. Wave length of Mercury Spectral Lines – Grating - Normal Incidence –Spectrometer
7. Young's Modulus –Non-Uniform Bending – Koenig's Method
8. Thickness of a thin wire – Air Wedge method
9. EMF of thermocouple –Potentiometer
10. High resistance by i) Charging ii) Leakage using Ballistic Galvanometer
11. Comparison of Mutual Inductance's – Ballistic Galvanometer
12. Measurement of dielectric constant - Parallel Plate Capacitor Method
13. Series Resonant Circuit
14. Parallel Resonant Circuit
15. i) Verification of Truth Tables of IC Gates: OR, AND, NOT, XOR, NOR, and NAND
ii) Verification of Demorgan's theorem using Logic Gates
16. Verification of Truth Table of Half and Full Adders
17. Verification of NAND as a Universal Building Block
18. Verification of NOR as a Universal Building Block
19. Verification of Truth Tables of Half and Full Subtractor

Pedagogy

Demonstration

Course Designer

Dr.M.Lavanya

COURSE CODE	COURSE NAME	CATEGORY	L	T	P	CREDIT
PS23A04	PHYSICS PAPER- II	Theory	58	2	-	4

Preamble

This paper introduces the student to the basic concepts of AC Circuits, Magnetic materials, electronics and digital electronics

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Remember the fundamental concepts of physics.	K1
CLO2	Understanding the importance of electronics, digital circuits and magnetic materials.	K2
CLO3	Apply the acquired knowledge of physics in day today life.	K3
CLO4	Analyze the concept of electronics, digital circuits and magnetic materials and to recognize their applications in various real time problems.	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	S	M	M	L
CLO2	S	S	S	S	L	M
CLO3	S	S	S	S	M	M
CLO4	S	S	S	S	M	S

S- Strong; M-Medium; L-Low

Syllabus

Unit – I	12 Hrs
Alternating currents:	
Mean and RMS values of AC – Alternating current relation between current and voltage in Pure R, C and L - Analysis of AC circuits containing i) resistance and inductance, ii) resistance and inductance iii) capacitance and resistance - Series and parallel resonant circuits - Power factor- - Transformer-construction-working-losses.	
Unit – II	11 Hrs
Magnetic materials:	
Magnetic Induction – Magnetization – Relation between the three magnetic vectors B, H and M –BH curve Experiment -Magnetic susceptibility – Properties - diamagnetic – paramagnetic – ferromagnetic – anti ferromagnetism and ferrimagnetism – Electron theory of magnetism - Weiss's theory of ferromagnetism - energy loss in hysteresis – importance of hysteresis curves.	
Unit – III	11 Hrs
Semiconductor Diodes: P and N type semiconductors - PN Junction Diode - Current Flow Mechanism in Forward and Reverse Biased Diode - Zener Diode and Voltage Regulation - Principle and structure of (1) LEDs (2) Photodiode (3) Solar cell - Transistor – Characteristics of CB, CE and CC Configuration – Transistor biasing – Voltage divider biasing.	
Unit - IV	12 Hrs
Two - terminal Devices and their Applications: Rectifier Diode: Half- wave Rectifiers - Bridge Full-wave Rectifiers, Calculation of Ripple Factor and Rectification Efficiency - Amplifiers: Single stage amplifier (CE) and Multi stage amplifier (CE)	
Sinusoidal Oscillators: Barkhausen's Criterion for self - sustained oscillations - RC Phase shift oscillator, determination of Frequency- Hartley oscillator.	
Unit – V	12 Hrs
Digital Electronics:	
Analog and Digital Signals- Boolean algebra- Boolean theorem- Simplification of Boolean expression- DeMorgan's theorem-OR, AND, NOT, XOR NOR and NAND gates-NOR and NAND gates as universal building blocks-half adder, full adder-flip flops - RS flip flop-JK flip flop (Truth table and circuit).	
Operational amplifier: Characteristics-virtual ground-summing point-inverting and non- inverting amplifier-adder-subtractor.	

Text Books

S.No	Authors	Title of the Book	Publishers	Year of Publication	Edition
1	R. Murugesan	Electricity and Magnetism	S.Chand andCo	2005	Revised Edition
2	V.K. Metha	Principles of electronics	S.Chand andCo	1980	1 st Edition
3	Murugesan R	Allied Physics	S.Chand and Co	2005	1 st edition

Reference Books

S.No	Authors	Title of the Book	Publishers	Year of Publication	Edition
1	V. Vijayendran	Introduction to Integrated Electronics	Viswanatha nPublishers	2005	1 st Edition

Pedagogy

Chalk and talk, PPT, Seminar, Group discussion, Interaction

Course Designer

Mrs. B. Veena

Reference Links:

Mean and RMS values of AC - <https://www.youtube.com/watch?v=qDHsokTcgck>

AC Circuit Analysis - <https://www.youtube.com/watch?v=f1RocvQxQw4>

Series & Parallel Resonant Circuits - <https://www.youtube.com/watch?v=G8KLJjq1E2o>

Transformer - Principle, Construction, Working and Efficiency - <https://www.youtube.com/watch?v=i29dCoSGa38>

Magnetization - <https://www.youtube.com/watch?v=C-OoUvKXbLU&t=2s>

BH Curve Experiment - <https://www.youtube.com/watch?v=1GGsbU698x8>

P and N type semiconductors - <https://www.youtube.com/watch?v=5ZNeDxfgYAE>

Different types of diodes - <https://www.youtube.com/watch?v=-EqOEiEQGLI>

Diode rectifier circuits - <https://www.youtube.com/watch?v=Xmu31a-59vw>

Single stage amplifier - <https://www.youtube.com/watch?v=NEiVSbPYWNE>

Multistage amplifier - <https://www.youtube.com/watch?v=vDePe-if1gs>

RC Phase Shift Oscillator - <https://www.youtube.com/watch?v=Gvb4GIV5ig8>

Hartley Oscillator - https://www.youtube.com/watch?v=3B_sBX_11Zw

Boolean Algebra and Logic gates - <https://www.youtube.com/watch?v=JQBRzsPhw2w>

Flip-flop - <https://www.youtube.com/watch?v=LTtuYeSmJ2g>

Operational amplifier - <https://www.youtube.com/watch?v=jsKSfaFQ4d4>

COURSE CODE	COURSE NAME	CATEGORY	L	T	P	CREDIT
PS23AP1	PHYSICS PRACTICALS	Practical	-	-	3 Hrs / week	2

Preamble

To enable the student to gain practical knowledge

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Gain knowledge in the scientific methods and learn the process of measuring different Physical variables	K1
CLO2	Educate The Basics Of Instrumentation, Data Acquisition And Interpretation of Results	K2
CLO3	Enhance The Students Understand The Concepts In Materials Properties	K2
CLO4	Have a deep knowledge of fundamentals of optics, electric circuits, magnetism and sound	K3

Mapping with Programme Learning Outcomes

CLO	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	S	S	M	S
CLO2	S	S	S	S	S	S
CLO3	S	M	S	M	M	M
CLO4	S	M	M	S	M	S

S- Strong; M-Medium;

Syllabus

List of Experiments

Any Eighteen

20. Young's Modulus –Non- Uniform bending –Pin and Microscope
21. Young's Modulus – Uniform bending – Optic lever
22. Rigidity modulus - Static torsion
23. Rigidity Modulus - torsional pendulum
24. Moment of inertia - torsional pendulum
25. Acceleration due to gravity - compound pendulum
26. Thermal conductivity of a bad conductor – Lee's disc method
27. AC frequency - Sonometer
28. Refractive index of solid prism - spectrometer
29. Refractive index of liquid-Hollow prism - spectrometer
30. Wave length- Grating - Minimum deviation method - Spectrometer
31. Low range Ammeter Calibration - Potentiometer
32. Low range Voltmeter Calibration - Potentiometer
33. Moment of a magnet in the Tan C position
34. Volt-Ampere characteristic of a p-n junction diode in the forward and reverse directions
35. Logic gates - Verification of the truth table
36. Characteristics of Zener diode
37. Closed loop gain of Operational Amplifier in Inverting mode
38. Closed loop gain of Operational Amplifier in Non Inverting mode.

Pedagogy

Demonstration and Practical Sessions

Course Designers:

Mrs. T. Poongodi

COURSE CODE	COURSE NAME	CATEGORY	L	T	P	CREDIT
PS23C04	FUNDAMENTALS OF DIGITAL ELECTRONICS	Theory	58	2	-	4

Preamble

The aim of this course is to make students acquire knowledge about Boolean algebra, logic circuits, designing counters and the basic concepts of memory and programmable logic device.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Outline the fundamental concepts and techniques used in digital electronics.	K1
CLO2	Understand the various basic and complex digital circuits	K2
CLO3	Apply the acquired knowledge to build and troubleshoot digital circuits.	K3
CLO4	Design and analyze the working of digital circuits and system.	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	M	M	S	S
CLO2	S	S	S	S	S	S
CLO3	S	S	S	S	S	M
CLO4	S	S	S	M	S	M

S- Strong; M-Medium; L-Low

Syllabus

Unit I

Number Systems, Logic gates and Boolean algebra

12 Hrs

Number Systems-Binary-octal-Hexadecimal and its conversions-Binary Codes- BCD codes- 8421 code-Excess 3 code-Grey code -Logic gates – AND, OR, NOT, NAND, NOR gates – Boolean algebra- operators – logic expressions De-Morgan’s theorem – laws and rules of Boolean algebra – truth table – reducing Boolean expressions – Karnaugh maps – simplification of digital circuits - Ancient arithmetical operations.

Unit II

Arithmetic circuits and Flip flops

12 Hrs

Half adder- full adder – Parallel binary adder, half subtractor – full subtractor – Parallel binary Subtractor, parity generator – encoder – decoder.

Flip flop –NAND Latch- RS Flip Flop- Edge triggered RS Flip Flop, D and T Flip Flop - JK Flip Flop, Master Slave Flip Flop – Sequential circuit concepts in ancient India.

Unit – III**Registers and Counters****12 Hrs**

Registers – Shift Registers-Shift left and Shift right registers – Ring Counter – Johnson's Counter - Asynchronous / Ripple counters – modulus counter- Mod 3, 4, 5, 6, 7, 8 and 9 counters - Decade counter - Synchronous Counters.

Unit – IV**11 Hrs****A/D & D/A Converters**

Digital to Analog (D/A) converter- Binary weighted resistor method – R / 2R Ladder Network - Analog to Digital (A/D) Converter – counter type - Dual slope integrator – successive approximation A/D Converter.

Unit – V**11 Hrs****Semiconductor memory**

Read only memory – Random access memory – PROM – EPROM-SRAMs –DRAMs - Digital IC Characteristics –Resistor Transistor Logic (RTL) – Transistor Transistor Logic (TTL) – Schottky TTL – Emitter Coupled Logic (ECL).

Books for Study:

S.No	Authors	Title of the Book	Publishers	Year of Publication	Edition
1	Malvino & Leach	Digital principles and applications	Tata Mc Graw Hill	1995	5 th Edition
2	M. Morris Mano	Digital Logic & Computer Designs	Prentice Hall of India.	2014	4 th Edition
3	Vijayendran V	Introduction to Integrated electronics	S. Viswanathan (Printers & Publishers, Chennai)	2005	1 st Edition
4	Swami Sri Bharatikrishna tirthaji	Vedic Mathematics	Motilal Bararsidass	1998	1 st Edition

Books for Reference:

S.No	Authors	Title of the Book	Publishers	Year of Publication	Edition
1	Chatterji B.N	- Digital Computer technology	Khanna Publishers, Delhi	1986	2 nd Edition
2	Puri V K	Digital Electronics circuits and systems	Tata McGraw Hill Publishing Company Limited New Delhi	1997	1 st Edition

3	S Salivahanan S Arivazhagan	Digital Circuits and Design	Vikas Publishing House Private Limited	2007	3 rd Edition
4	Mahamahopadhyaya Ganganatha Jha	The Nyaya Sutras of Gautama	Motilal Bararsidass	1984	2 nd Edition

References For E-Content

<https://www.youtube.com/watch?v=A-gWV5liKxM>
<https://www.youtu.be/IeWcvAsz88o>
https://www.youtu.be/AzyG_wL3qMY
<https://youtu.be/sJXTo3EZoxM>
<https://youtu.be/DqCDQH44y9>
<https://youtu.be/feBvhLFQEDk>
<https://youtu.be/vu0wgiDlrRs>
<https://youtu.be/iaIu5SYmWVM>
<https://www.youtube.com/watch?v=SAcVlreweOc>
<https://www.youtube.com/watch?v=dpq1uqFcKnM>
<https://youtu.be/p4R0Ej6FCn0>
<https://youtu.be/nemTyWV5lv8>
https://youtu.be/r787m_IaR1I

Pedagogy

Chalk and Talk lectures, Seminar, Interaction, Power Point Presentation, E-content

Course Designer

Mrs. D. Niveditha

COURSE CODE	COURSE NAME	CATEGORY	L	T	P	CREDIT
PS23CP2	PHYSICS PRACTICALS II	Practical	-	-	3 hrs/ Week	4

Preamble

This course introduces students to the methods of experimental physics. Emphasis will be given on laboratory techniques such as accuracy of measurements and data analysis. The concepts that are learnt in the lecture sessions will be translated to the laboratory sessions thus providing a hands-on learning experience such as in measuring the basic concepts in properties of matter, heat, optics, electricity and electronics.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Understand the usage of basic laws and theories to determine various properties of the materials given.	K1, K2
CLO2	Understand the application side of the experiments.	K2
CLO3	Apply knowledge of mathematics and physics fundamentals and an instrumentation to arrive solution for various problems.	K3
CLO4	Use standard methods to calibrate the given high range voltmeter and to measure the elasticity and thickness of the given material.	K3
CLO5	Use of basic laws to study the spectral properties and optical properties of the given prism and grating.	K3

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	L	L	L	L
CLO2	S	S	S	S	M	M
CLO3	S	S	S	S	M	M
CLO4	S	S	S	S	M	M
CLO5	S	S	S	S	M	M

S- Strong; M-Medium; L-Low

Syllabus

List of Experiments

Any 16

1. Young's Modulus – Uniform Bending – Koenig's Method
2. i-d curve- μ of the prism-Spectrometer
3. Dispersive Power of Grating – Spectrometer- Wave length of Mercury Spectral Lines by minimum deviation method
4. Refractive index (μ) of the material of the prism lens – Newton's rings method
5. Calibration of High Range Voltmeter –Potentiometer
6. Wave length of Mercury Spectral Lines – Grating - Normal Incidence –Spectrometer
7. Young's Modulus –Non-Uniform Bending – Koenig's Method
8. Thickness of a thin wire – Air Wedge method
9. EMF of thermocouple –Potentiometer
10. High resistance by i) Charging ii) Leakage using Ballistic Galvanometer
11. Comparison of Mutual Inductance's – Ballistic Galvanometer
12. Measurement of dielectric constant - Parallel Plate Capacitor Method
13. Series Resonant Circuit
14. Parallel Resonant Circuit
15. i) Verification of Truth Tables of IC Gates: OR, AND, NOT, XOR, NOR, and NAND
ii) Verification of Demorgan's theorem using Logic Gates
16. Verification of Truth Table of Half and Full Adders
17. Verification of NAND as a Universal Building Block
18. Verification of NOR as a Universal Building Block
19. Verification of Truth Tables of Half and Full Subtractor

Pedagogy

Demonstration

Course Designer

Dr.M.Lavanya

COURSE CODE	COURSE NAME	CATEGORY	L	T	P	CREDIT
PS23A04	PHYSICS PAPER- II	Theory	58	2	-	4

Preamble

This paper introduces the student to the basic concepts of AC Circuits, Magnetic materials, electronics and digital electronics

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Remember the fundamental concepts of physics.	K1
CLO2	Understanding the importance of electronics, digital circuits and magnetic materials.	K2
CLO3	Apply the acquired knowledge of physics in day today life.	K3
CLO4	Analyze the concept of electronics, digital circuits and magnetic materials and to recognize their applications in various real time problems.	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	S	M	M	L
CLO2	S	S	S	S	L	M
CLO3	S	S	S	S	M	M
CLO4	S	S	S	S	M	S

S- Strong; M-Medium; L-Low

Syllabus

Unit – I	12 Hrs
Alternating currents:	
Mean and RMS values of AC – Alternating current relation between current and voltage in Pure R, C and L - Analysis of AC circuits containing i) resistance and inductance, ii) resistance and inductance iii) capacitance and resistance - Series and parallel resonant circuits - Power factor- - Transformer-construction-working-losses.	
Unit – II	11 Hrs
Magnetic materials:	
Magnetic Induction – Magnetization – Relation between the three magnetic vectors B, H and M –BH curve Experiment -Magnetic susceptibility – Properties - diamagnetic – paramagnetic – ferromagnetic – anti ferromagnetism and ferrimagnetism – Electron theory of magnetism - Weiss's theory of ferromagnetism - energy loss in hysteresis – importance of hysteresis curves.	
Unit – III	11 Hrs
Semiconductor Diodes: P and N type semiconductors - PN Junction Diode - Current Flow Mechanism in Forward and Reverse Biased Diode - Zener Diode and Voltage Regulation - Principle and structure of (1) LEDs (2) Photodiode (3) Solar cell - Transistor – Characteristics of CB, CE and CC Configuration – Transistor biasing – Voltage divider biasing.	
Unit - IV	12 Hrs
Two - terminal Devices and their Applications: Rectifier Diode: Half- wave Rectifiers - Bridge Full-wave Rectifiers, Calculation of Ripple Factor and Rectification Efficiency - Amplifiers: Single stage amplifier (CE) and Multi stage amplifier (CE)	
Sinusoidal Oscillators: Barkhausen's Criterion for self - sustained oscillations - RC Phase shift oscillator, determination of Frequency- Hartley oscillator.	
Unit – V	12 Hrs
Digital Electronics:	
Analog and Digital Signals- Boolean algebra- Boolean theorem- Simplification of Boolean expression- DeMorgan's theorem-OR, AND, NOT, XOR NOR and NAND gates-NOR and NAND gates as universal building blocks-half adder, full adder-flip flops - RS flip flop-JK flip flop (Truth table and circuit).	
Operational amplifier: Characteristics-virtual ground-summing point-inverting and non- inverting amplifier-adder-subtractor.	

Text Books

S.No	Authors	Title of the Book	Publishers	Year of Publication	Edition
1	R. Murugesan	Electricity and Magnetism	S.Chand andCo	2005	Revised Edition
2	V.K. Metha	Principles of electronics	S.Chand andCo	1980	1 st Edition
3	Murugesan R	Allied Physics	S.Chand and Co	2005	1 st edition

Reference Books

S.No	Authors	Title of the Book	Publishers	Year of Publication	Edition
1	V. Vijayendran	Introduction to Integrated Electronics	Viswanatha nPublishers	2005	1 st Edition

Pedagogy

Chalk and talk, PPT, Seminar, Group discussion, Interaction

Course Designer

Mrs. B. Veena

Reference Links:

- Mean and RMS values of AC - <https://www.youtube.com/watch?v=qDHsokTcgck>
- AC Circuit Analysis - <https://www.youtube.com/watch?v=f1RocvQxQw4>
- Series & Parallel Resonant Circuits - <https://www.youtube.com/watch?v=G8KLJjq1E2o>
- Transformer - Principle, Construction, Working and Efficiency - <https://www.youtube.com/watch?v=i29dCoSGa38>
- Magnetization - <https://www.youtube.com/watch?v=C-OoUvKXbLU&t=2s>
- BH Curve Experiment - <https://www.youtube.com/watch?v=1GGsbU698x8>
- P and N type semiconductors - <https://www.youtube.com/watch?v=5ZNeDxfgYAE>
- Different types of diodes - <https://www.youtube.com/watch?v=-EqOEiEQGLI>
- Diode rectifier circuits - <https://www.youtube.com/watch?v=Xmu31a-59vw>
- Single stage amplifier - <https://www.youtube.com/watch?v=NEiVSbPYWNE>
- Multistage amplifier - <https://www.youtube.com/watch?v=vDePe-if1gs>
- RC Phase Shift Oscillator - <https://www.youtube.com/watch?v=Gvb4GIV5ig8>
- Hartley Oscillator - https://www.youtube.com/watch?v=3B_sBX_11Zw
- Boolean Algebra and Logic gates - <https://www.youtube.com/watch?v=JQBRzsPhw2w>
- Flip-flop - <https://www.youtube.com/watch?v=LTTuYeSmJ2g>
- Operational amplifier - <https://www.youtube.com/watch?v=jsKSfaFQ4d4>

COURSE CODE	COURSE NAME	CATEGORY	L	T	P	CREDIT
PS23AP1	PHYSICS PRACTICALS	Practical	-	-	3 Hrs / week	2

Preamble

To enable the student to gain practical knowledge

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Gain knowledge in the scientific methods and learn the process of measuring different Physical variables	K1
CLO2	Educate The Basics Of Instrumentation, Data Acquisition And Interpretation of Results	K2
CLO3	Enhance The Students Understand The Concepts In Materials Properties	K2
CLO4	Have a deep knowledge of fundamentals of optics, electric circuits, magnetism and sound	K3

Mapping with Programme Learning Outcomes

CLO	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	S	S	M	S
CLO2	S	S	S	S	S	S
CLO3	S	M	S	M	M	M
CLO4	S	M	M	S	M	S

S- Strong; M-Medium;

Syllabus

List of Experiments **Any Eighteen**

1. Young's Modulus –Non- Uniform bending –Pin and Microscope
2. Young's Modulus – Uniform bending – Optic lever
3. Rigidity modulus - Static torsion
4. Rigidity Modulus - torsional pendulum
5. Moment of inertia - torsional pendulum
6. Acceleration due to gravity - compound pendulum
7. Thermal conductivity of a bad conductor – Lee's disc method
8. AC frequency - Sonometer
9. Refractive index of solid prism - spectrometer
10. Refractive index of liquid-Hollow prism - spectrometer
11. Wave length- Grating - Minimum deviation method - Spectrometer
12. Low range Ammeter Calibration - Potentiometer
13. Low range Voltmeter Calibration - Potentiometer
14. Moment of a magnet in the Tan C position
15. Volt-Ampere characteristic of a p-n junction diode in the forward and reverse directions
16. Logic gates - Verification of the truth table
17. Characteristics of Zener diode
18. Closed loop gain of Operational Amplifier in Inverting mode
19. Closed loop gain of Operational Amplifier in Non Inverting mode.

Pedagogy

Demonstration and Practical Sessions

Course Designers:

Mrs. T. Poongodi

COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
PS23C05	ELECTRONICS	Theory	88	2	-	5

Preamble

This course helps the students to gain basic ideas of the construction and working of electronic devices and circuits and to understand the fundamentals of communication systems.

Course Learning Outcomes

On the successful completion of the course, students will

CLO Number	CLO Statement	Knowledge Level
CLO 1	Be familiar with the basic concepts of construction and working of electronic devices and optical fibers	K1
CLO 2	Apply the knowledge to understand the working of amplifiers, oscillators and multivibrators	K3
CLO 3	Understand the principles of modulation and demodulation	K2
CLO 4	Apply the knowledge to understand the working of special types of diodes	K3
CLO 5	Apply the principles of feedback in amplifiers and oscillators	K3

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO 1	S	M	S	M	S	M
CLO 2	S	S	M	S	S	M
CLO 3	S	S	S	S	S	S
CLO 4	S	S	S	S	S	S
CLO 5	S	S	S	S	S	S

S- Strong; M-Medium;

Syllabus

Unit I

Electronic Devices:

18 Hrs

Kirchhoff laws- Network Theorem: **Thevenin's and Norton's theorem** -PN junction- formation – properties - applying voltage-current flow VI characteristics- breakdown voltage and knee voltage. Crystal diode as a rectifier-resistance. Half wave rectifier-**Full wave rectifier**-Centre tap and Bridge Rectifier-Efficiency-Ripple factor- comparison. Filter circuits-types. **Zener diode**-equivalent circuit- Voltage stabilizer -Photo diode-characteristics-applications- Tunnel Diode- Tunnel diode oscillator-Varactor diode-Application of Varactor diode –Transistors -introduction- origin of the name transistor-naming the transistor terminals-Transistor Action-Transistor symbols – Transistor connections-relation between the current amplification factors-Transistor as an amplifier in common emitter connection-Transistor load line analysis- characteristics of common emitter connection-operating point-cut off and saturation points

Unit II

18 Hrs

Amplifiers:

Multistage transistor amplifiers-Role of Capacitors in Transistor Amplifiers-Gain frequency and bandwidth- Properties of decibel gain- RC coupled amplifier -Transformer coupled amplifier.

Amplifiers with negative feedback-Principles of negative voltage feedback-gain-Advantages of negative voltage feedback- Principle of negative current feedback-gain-Effects of negative current feedback- emitter follower.

Operational amplifier: Basic concepts- **Ideal Operational Amplifier**- Inverting OP-AMP - Non inverting OP-AMP-Characteristics- CMRR- Applications of OPAMP- inverting amplifier as adder-Subtractor-differentiator-**integrator**.

Unit III

17Hrs

Oscillators and Multivibrators

Barkhausen's criteria for self sustained oscillations-Hartley oscillator –frequency and condition for sustained oscillations -**Colpitt's oscillator** –frequency and condition for sustained oscillations-crystal oscillator-Phase shift oscillators-Analysis - **Wien bridge oscillator** – Analysis.

Astable, monostable and bistable Multivibrators

Unit IV **17Hrs**

Modulation & Demodulation

Radio Broadcasting, Transmission and Reception-Modulation-Need for modulation-
Types of Modulation-Amplitude Modulation-Modulation factor-Analysis of Amplitude Modulated wave-Sideband frequencies in AM waves-Transistor AM modulator-Superheterodyne AM Receiver -Frequency modulation (FM)- Theory of Frequency modulation – Comparison of FM and AM-Demodulation-Essentials in demodulation-Phase modulation (PM)-definition-analysis-**comparison of AM, FM and PM**

Unit V **18Hrs**

Fiber Optics and special purpose diodes

Fiber construction- Application of Fiber cables. - Propagation of light waves in an optical fibre – Acceptance angle and Acceptance cone of a fibre – Numerical Aperture (NA) – NA of a graded Index Fibre – **Classification of Optical fibers** –Step index Fiber- Step index Monomode Fiber- Graded index Multimode Fiber

Tunnel diode- **LED**-Structures of LED-LED materials - **semiconductor Laser diode LED** – The process involved in LEDS – Modulation bandwidth and Spectral Emission of LEDS-PIN photo detector.

Books for Study:

S. No	Authors	Title	Publishers	Year & Edition
1	Mehta V.K & Rohit Mehta	Principles of Electronics (Unit I, II &III)	Tata McGraw Hill	2012, 11 th Edn
2	B. L Theraja	Basic Electronics- Solid State (Unit I and II)	S. Chand & Company Ltd	2009, 5 th Edn
3	Gupta Kumar	Handbook of Electronics (Unit II)	Pragati Prakashan	2007, 34 th Edn
4	Dennis Roddy &John Coolen	Electronic Communicatio (Unit IV)	PHI	1995, 4 th Edn
	George Kennedy & Bernard Devis	Electronic Communication systems (Unit IV)	Tata Mc Graw-Hill	2005, 28 th Edn
5	Millman and Halkias	Integrated Electronics (Unit II)	Tata Mc Graw Hill	2005, 41 st Edn
6	Subir Kumar Sarkar	Optical Fibers and Fiber Optic Communication Systems (Unit V)	S. Chand &Co	2001, 2 nd Edn

Books for Reference:

S. No	Authors	Title	Publishers	Year & Edition
1	Bernard Grob	Basic electronics	Tata McGraw-Hill	2007, 2 nd Edn

2	R S Sedha	Applied Electronics	S.Chand	2004, 24 th Edn
---	-----------	---------------------	---------	----------------------------

E Resources

1. <https://youtu.be/NPqLUFN9tAE>
2. <https://youtu.be/I2nrBITEVIs>
3. <https://youtu.be/ghXZuVFhVzo>
4. <https://youtu.be/WYKsYvLJ7HE>
5. <https://youtu.be/OPvs7A554Rw>
6. https://youtu.be/LXzvN_8qmgQ
7. <https://youtu.be/1fgw-ONIAcc>
8. https://youtu.be/xMvb_druL18
9. https://youtu.be/mHvV_Tv8HDQ
10. https://youtu.be/x_APePdtrfQ
11. <https://youtu.be/JkhRKvOPuHw>
12. https://youtu.be/3_2k4fYtbpo
13. <https://youtu.be/NJ0ZIvKfLD8>
14. <https://youtu.be/IILf49pDeQc>

Pedagogy

Chalk and talk, PPT, Seminar, Group discussion, Interaction

Course Designer:

Dr. J. Balavijayalakshmi

COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
PS23C06	SOLID STATE PHYSICS	Theory	88	2	-	5

Preamble

The objective of this paper is to enable the students to have a physical understanding of matter from an atomic view point. Topics covered include the structure, super conductivity and electrical properties of matter and its applications.

Course Learning Outcome

On successful completion of the course the students will be able to

CLO number	CLO Statement	Knowledge Level
CLO 1	Outline the importance of solid state physics in the modern society	K1
CLO 2	Explore the relationships between chemical bonding & crystal structure and their defects	K2
CLO 3	Understand the basic properties of metals, insulators and semiconductors and their technological applications	K2

CLO 4	Extend their knowledge in theoretical fundamentals of electron theory and super conductivity	K3
CLO 5	Transfer their knowledge level from theoretical physical subjects towards the understanding of basic properties of solid state matter	K2 & K3

Mapping with Programming Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO 1	S	S	S	S	S	S
CLO 2	S	S	S	M	S	S
CLO 3	S	S	S	M	S	M
CLO 4	S	M	S	L	M	S
CLO 5	S	S	S	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

Unit I

17Hrs

Crystal Lattices

Introduction to solids- Lattice - Translation Vectors - Lattice with a Basis–Unit cell - Primitive Cell–Lattice parameters - Symmetry operations -Crystal Systems and Bravais Lattices—point groups and space groups (Concepts only) –Metallic Crystal Structures -SC, BCC, FCC and HCC structures – Other cubic structures - diamond cubic structure-Zinc blend structure-Sodium Chloride structure- Caesium Chloride structure- Polymorphism and Allotropy.

Unit II

Crystal Planes

17Hrs

Introduction –Nomenclature of crystal directions - Nomenclature of crystal planes—Miller indices –Procedure for finding Miller indices- Reciprocal Lattices (Concept and Properties) - Diffraction of X-rays by Crystals (Bragg's formulation) - Crystal imperfections and defects (elementary ideas only)

Ancient Indian Metallurgy and Crystal Structure:

Overview of India's rich metallurgical heritage-Wootz Steel: The Science Behind Damascus Blades- (basic ideas only)¹⁴.

Unit III

Electron Theory of Metals

19 Hrs

Classical Free electron theory – Electrical conductivity, Relaxation Time, Collision time and mean free path-Breakdown of classical theory - Quantum free electron theory-Fermi-Dirac statistics and electronic distribution in solids-Density of states- Fermi Surface - Electrical conductivity of a metal from quantum free electron theory- Band theory of solids - Kronig Penney model – Brillouin Zones – Distinction between Metals, Semiconductors and insulators on the basis of band theory.

Unit IV

Dielectric and Magnetic Properties of Materials

18 hrs

Polarization- Local Electric Field at an Atom- Depolarization Field- Electric Susceptibility
Polarizability - Clausius-Mossotti Equation- Classical Theory of Electric Polarizability -
Response of a substance to magnetic field- Classification of magnetic materials- Atomic Theory
of Magnetism- The origin of permanent magnetic moment-Classical Langevin Theory of
Diamagnetism - Sources of Para magnetism- Langevin Classical Theory of Para magnetism
Ferromagnetism- The Weiss molecular Exchange field Curie temperature – Ferromagnetic
Domains- Discussion of B-H Curve. Hysteresis and Energy Loss

Unit V

17 Hrs

Superconductivity

Introduction – Explanation for the occurrence of superconductivity – General properties of superconductors-Meissner effect-Type I and Type II superconductors- London equations and penetration depth- energy gap in superconductors –Superconductors in A.C fields
Thermodynamics of superconductors –BCS theory - Applications of superconductors

Books for study:

S. No	Authors	Title	Publishers	Year & Edition
1	M. Arumugam	Solid state Physics (Units I to III)	Anuradha agencies	2009, 1 st Edn
2	Pillai .S.O	Solid state Physics (Unit IV &V)	New age International Private Limited	2011, 6 th Edn

Books for Reference:

S. No	Authors	Title	Publishers	Year & Edition
1	Kittel	Solid state Physics	Wiley student edition	2007, 8 th Edn
2	Gupta and Kumar	Solid state Physics	K. Nath & Co	1992, 8 th Edn
3	Arthur Beiser	Concepts of Modern Physics	Tata McGraw Hill	2008, 6 th Edn
4	Dekker	Solid state Physics	Macmillan & Co limited	1967, 1 st Edn

E Resources

1. <https://youtu.be/i5VykZxXjzc>
2. <https://youtu.be/MZS9SBRfl4o>
3. <https://youtu.be/v72AQhCtixl>
4. <https://youtu.be/4IUoAwWmYsc>
5. <https://youtu.be/Mz314lyi1f0>
6. <https://youtu.be/PDgvNPMxrsY>
7. <https://youtu.be/4IcXvmnVolc>
8. <https://youtu.be/2xOAb68agy0>

9. History of Science and Technology in India By Dr. Binod Bihari Satpathy.
https://margheritacollege.in/admin_portal/all_mrgclg_files/department_studymat/History%20of%20science%20and%20technology%20in%20India9577.pdf

Pedagogy

Chalk and talk, PPT, Seminar, Group discussion, Interaction

Course Designer

1. Dr. G. Praveena

COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
PS23E01	MATHEMATICAL PHYSICS	Theory	58	2	-	5

Preamble

The aim of this course is to make students acquire knowledge in mathematics and the learners are expected to provide extensive mathematical formalism for understanding and interpreting various physical problems.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1.	Remember the basic concepts and knowledge on mathematical methods	K1
CLO2.	Understand the various techniques in solving physical problems on Vectors, Matrices, differential equations, Complex numbers and functions.	K2
CLO3.	Apply the acquired knowledge on various analytical techniques to obtain the solution for complex physics problems	K3
CLO4.	Analyse and interpret the solutions obtained by mathematical methods	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	M	M	S	S
CLO2	S	S	S	S	S	S
CLO3	S	S	S	S	S	M
CLO4	S	S	S	M	S	M

S- Strong; M-Medium;

Syllabus**Unit I****Vectors 12 Hrs**

Vectors with applications -Vector algebra – addition of vectors – multiplication of a vector by a scalar – orthogonal resolution of vectors – rotation of coordinates – product of two vectors – some physical applications of the product of two vectors – product of three vectors and four vectors – reciprocal system of vectors – differentiation of vectors.

Unit II**Matrix 12 Hrs**

Definition- Four basic algebra operations for matrices - Equality of matrices - Addition of matrices - Multiplication of a matrix by a number - Matrix multiplication –partitioning of matrices - transpose of a matrix – the conjugate of a matrix – the conjugate transpose - Symmetric and antisymmetric matrices – Hermitian and skew Hermitian matrix -determinant of matrix – singular and non-singular matrices – adjoint of a matrix - Orthogonal matrix- Unitary matrix - Rotation matrices - Trace of a matrix – rank of matrix.

Unit – III**Complex Analysis 11 Hrs**

Complex Numbers–Review – Complex Conjugates – Modulus and argument of a Complex number – Graphical representation - functions of complex variables - Analytic function -Cauchy Riemann conditions – Laplace Equations – Harmonic Functions– Problems

Unit – IV**Differential Equations of First Order: 12 Hrs**

Order and degree of a differential equation – formation of differential equation – solution – differential equation of the first order and first degree – variables separable – Homogeneous differential equation – equation reducible to homogeneous form - linear differential equation – equations reducible to the linear form (Bernoulli equation).

Unit – V**Introduction to Neural Networks 13 Hrs**

What are neural networks? (The Spark of PDP) – Forward Pass: From Inputs to Activations - Cost Functions: Measuring Error – Optimization: The Power of Gradient Descent – Back propagation: Learning Begins – Training a Neural Network (End – to – End) – Experiments: Feel the Network – Overfitting & Generalization – Think Like PDP: Reflection as understanding – Beyond Supervised: Autoencoders (Optional Intro) – Final Reflection: Why Architecture Exist.

Books for study:

S. No	Authors	Title	Publishers	Year & Edition
1	B.D. Gupta	Mathematical Physics	Vikas Publishing House	2022, 4 th Edn
2	Satyaprakash	Mathematical Physics	Sultan Chand & Sons	2021, 6 th Edn
3	H.K. Dass	Mathematical Physics	S.Chand and Co	2019, 8 th Edn
4	Gupta S.P	Statistical Methods	S.Chand and Co	2021, 46 th Edn
5	David E. Rumelhart, James L. McClelland	Parallel Distributed Processing	MIT Press	1987, 1 st Edn

Books for References:

S. No	Authors	Title	Publishers	Year & Edition
1	P.K Chattopadhyay	Mathematical Physics	Wiley Eastern Ltd.	2022, 3 rd Edn
2	N.P. Bali	Statistics	Laxmi Publications	2020, 4 th Edn
3	S.S.Rajput	Mathematical Physics	Pragati Pragasam, Meerut	2019, 11 th Edn

E Resources

1. <https://youtu.be/VFRW0f0XUU8>
2. <https://youtu.be/ZM2-Bb8Zdt0>
3. <https://youtu.be/gPnWm-IXoAY>
4. <https://youtu.be/TBpDMLCC2uY>
5. <https://youtu.be/p48uw2vFWQs>
6. <https://youtu.be/gYacCtBJ8VA>
7. https://youtu.be/BZxZ_eEuJBM
8. <https://youtu.be/-HF7jgvtxl8>
9. <https://youtu.be/0V282K1cmOk>
10. <https://youtu.be/MQOookEYLoU>
11. <https://youtu.be/gd1FYn86P0c>

Pedagogy

Chalk and Talk lectures, Group Discussion, Seminar, Interaction, power point presentation.

Course Designers

1. Dr. M. Lavanya

COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
PS23CP3	PHYSICS PRACTICAL III	Practical	-	-	6 Hrs/ Week	4

Preamble

This course helps the student to acquire practical knowledge to design the basic electrical circuits using diodes, transistors, etc. The concepts that are learnt in the lecture sessions will be translated to the laboratory sessions thus providing a hands-on learning experience to design the circuits. It also helps them to understand the applications of solar cells.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1.	Understand Basic laws and theories involving diodes, transistors, solar cells, thermistors etc.,	K1
CLO2.	Understand the given concepts and its physical significance	K2
CLO3.	Apply the theory to design the basic electrical circuits	K3
CLO4.	Use these basic circuits to create amplifier circuits, oscillator circuits, regulated power supplies etc.,	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	S	S	S	S
CLO2	S	S	S	M	M	S
CLO3	S	S	S	M	M	S
CLO4	S	S	S	S	S	S

S- Strong; M-Medium;

Syllabus

List of Experiments (Any 16)

1. Determination of Absolute Mutual Inductance – Ballistic Galvanometer
2. Determination of Absolute Capacity- Ballistic Galvanometer
3. Cauchy's Constants using Spectrometer
4. Dispersive power of a prism using Spectrometer
5. μ of a prism – Stoke's formula – Spectrometer
6. Characteristics of Junction Diode
7. Characteristics of Zener Diode
8. Transistor Characteristics - Common Emitter Configuration
9. Characteristics of FET
10. Characteristics of UJT
11. R-C Coupled Amplifier – Single Stage
12. Emitter Follower
13. Voltage Doubler
14. Regulated low Range power supply
15. Closed loop Gain Op Amp (Inverting & Non inverting)
16. Op Amp as adder in inverting mode & Subtractor
17. Op Amp as Differentiator & Integrator
18. Op Amp - Astable Multivibrator
19. Characteristics of Laser diode
20. Study of characteristics of photodiode (solar cell)
21. Colpitts Oscillator
22. Hartley Oscillator
23. Determination of Band Gap using Thermistor.
24. Measurement of Resistance using Carey Fosters Bridge.

Pedagogy:

Demonstration and practical sessions

Course Designers:

1. Dr. M. Lavanya
2. Dr. N. Priyadharsini

COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
PS23SB01	PROGRAMMING IN C	Theory & Practical	24	4	17	3

Preamble

The main objective of this course is to i) train the students to the basic concepts of programming language ii) to provide exposure to problem solving through programming iii) also create foundation for students to learn other complex programming languages like C++, Java etc.,

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Recall the fundamental concepts of C programming	K1
CLO2	Understand the characteristics of operators, arrays, structures	K2
CLO3	Apply the acquired knowledge to design programs and algorithms	K3
CLO4	Analyze and develop programs for simple real time applications	K4

Mapping with Programme Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO 1	S	M	M	M	S	S
CLO 2	S	S	S	S	M	M
CLO 3	S	S	S	M	S	M
CLO 4	S	M	S	S	S	S

S- Strong; M-Medium; L-Low

Unit I**9 Hrs****Introduction to C and Operators with Expressions**

C character set - C tokens - Key words and identifiers-**Constants- Variables - Date types and sizes**- Declaration of variables –Assigning valued to the variables –Arithmetic operators - relational and logical operators-assignment operators - **increment and decrement operator**-**Conditional operator**-Bit wise and Special operator - Arithmetic Expression-Evaluation of expression – Precedence of arithmetic operations-Type conversion in expressions.

Unit II**9 Hrs****Statements and Loops - I & Loops - II**

IF Statement – IF ELSE Statement- Nesting IF ELSE Statements- Switch Statements - GO TO Statements - While Statements – DO statements – For Statements- Jumps in loops - Simple Programs

Unit III**8 Hrs****Arrays and Structures**

One Dimensional array – Two dimensional Array- Initializing two-dimensional Array- Multidimensional arrays - Dynamic Arrays. **Structure definition – Giving values to members- Structure initialization – Comparison of structure variables**- Arrays of Structures – Arrays within Structure – Structure with in Structures.

Unit IV**Programmes - I****8Hrs**

Swapping the two variables without use of third variable and the XOR operations on two numbers using simple logical function and expressions. Generate the Fibonacci series and find the factorial of a given number using for statement. Generate prime numbers within a range and space count using if and for statement. Count the number of positives, negatives and zeroes and user input validation using if else condition, vowels and consonants using if else and for statement.

Unit V**Programmes - II****9 Hrs**

Solve the Quadratic Equation, find whether the given string is Palindrome or not and compare two string inputs using if else - else if statement. Find sum of the digits and reverse the digits using while do statement. Using array to perform transpose of a given matrix, Matrix Addition, Matrix Multiplication. Sort set of numbers in ascending and descending order using array and for condition. Lower to upper case using the array, if else and for statement.

Text Book

S. No	Authors	Title	Publishers	Year & Edition
1	E. Balagurusamy	Programming in ANSI C	Tata Mc Graw Hill	2019, 8 th Edn

Reference Books

S. No	Authors	Title	Publishers	Year & Edition

1	Byran Gottfried	Programming with C	Tata McGraw Hill	2013, 3 rd Edn.
2	V.Rajaraman	Computer Programming in C	Prentice Hall of India Pvt Ltd	2004, 1 st Edn.
3	Smarajit Ghosh	Programming in C	Prentice Hall of India Pvt Ltd	2004, 1 st Edn.
4	Yeswanth Kanethkar	Let us C	BPB Publications	2014, 13 th Edn.
5	MartinJ Gentile	An Easy Guide to Programming in C	Create Space Independent Publishing Platform	2012, 2 nd Edn

Reference for E-content:

1. <https://www.youtube.com/watch?v=RdJ-osV3seE>
2. <https://www.youtube.com/watch?v=LSLAYF1kKeQ>
3. https://www.youtube.com/watch?v=rT_sDElraqY
4. <https://www.youtube.com/watch?v=r8AGPBJ6t3s>
5. https://www.youtube.com/watch?v=_57FcSBtJNU
6. <https://www.youtube.com/watch?v=OxkTCqGIWxk>

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Quiz, Seminar.

Course Designer:

Dr. P. Maheswari

Objective

To make the students to understand the importance of experimental analysis, scientific approach in solving problems related to the environment and society and to educate and train the students to write scientific papers

Group Project & viva voce

Each group will be comprising of 5 members and will be allotted to a staff coordinator. A specific problem will be assigned to the students or they will be asked to choose a problem/ area of interest. The topic/ area of work will be finalized at the end of IV semester, allowing scope for the students to gather relevant literature during the vacation. The research work can be carried at the college or any other organization approved by the staff coordinator and the HOD. Viva-voce/ presentation will be conducted by a panel of internal examiners including the HOD and the staff coordinator guiding the project. A PowerPoint / OHP presentation by the group before the audience will be evaluated on the basis of student's response to questions.

Area of work

Any topic related to physics and its applications.

Methodology

Each project should contain the following details:

Brief introduction on the topic

Review of literature

Materials and Methods

Experimental Results and Discussion – evidences in the form of figures, tables and photographs can be enclosed

Summary

Bibliography

The above content should not exceed 50 pages.

COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
PS23E02	MATERIALS SCIENCE I	Theory	58	2	-	5

Preamble

The objective of this paper is to introduce the students to electron theory of solids and different types of materials based on their properties.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Remember the fundamental concepts related to electron theory of solids.	K1
CLO2	Understand the electrical, thermal, dielectric, magnetic and superconducting behaviour of different materials.	K2
CLO3	Apply concepts such as Ohm's law, Hall effect, polarization and Wiedemann-Franz law to analyse the physical properties of materials	K3
CLO4	Analyse the behaviour of solids under various physical conditions using classical and quantum models	K4
CLO5	Evaluate and distinguish different types of materials based on their physical and electronic properties for technological applications.	K5

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	M	S	M	S	M
CLO2	S	S	S	S	S	M
CLO3	M	S	S	S	S	M
CLO4	M	M	S	S	S	S
CLO5	S	S	S	S	S	S

S- Strong; M-Medium;

Syllabus**Unit I****Electron Theory of Solids****12 Hrs**

Introduction-the classical free electron theory and the quantum free electron theory- Electron energy in metals and Fermi energy- density of states- anti-symmetric nature of the wave functions of the Fermi system – explanation of covalent bonding in crystals- electron in a periodic potential- energy bands in solids- Brillouin zones – distinction between metals, insulators and semiconductors- effect mss of electron and concept of hole – the Hall effect.

Unit II**12 Hrs****Conducting materials**

Introduction- atomic interpretation of ohms law- relaxation time and electrical conductivity – relaxation time – collision time- mean free path- heat developed in a current carrying conductor- sources of resistivity of metals and alloys- thermal conductivity*- Wiedemann Franz law- thermal expansion- electrical conductivity at high frequencies- geometrical and magnetic field effects on electrical conductivity- variation of electrical resistivity due to mechanical stress (strain gauge)- different types of conducting materials.

Unit III**11 Hrs****Dielectric materials**

Introduction- fundamental definition in dielectric – different types of electric polarization- frequency and temperature effects on polarization- dielectric loss- local field or internal field – Clausius- Mossotti relation – determination of dielectric constant – dielectric break down- properties and different types on insulating materials – Ferro electric materials

Unit IV**12 Hrs****Magnetic materials**

Introduction- different type soft magnetic materials – classical theory of dia magnetism (Langevin theory)- Langevin theory of para magnetism- Weiss theory of para magnetism- Weiss of Ferro magnetism (molecular field theory on field magnetism) – Heisenberg interpretation on internal field and quantum theory of ferromagnetism- domain theory of Ferro magnetism- hard and soft materials

Unit V**13 Hrs****Superconducting materials**

Introduction- explanation for the occurrence of super conductivity – general properties of super conductors- other general observations- types of superconductors- applications of superconductors.

Text Book

S. No	Authors	Title	Publishers	Year & Edition
1	Arumugam. M	Material Science	Anuradha agencies-Kumbakonam	1990, 1 st Edn

Reference Books

S. No	Authors	Title	Publishers	Year & Edition
1	Raghavan	Materials and engineering	Prentice Hall of India	1990, 3 rd Edn
2	Vijaya & Rangarajan	Materials Science	Tata McGraw Hill Publishing Company Ltd	2005, 1 st Edn
3	Raghavan	Materials Science	Prentice Hall	1990, 13 th Edn

Reference for E-content:

1. <https://www.youtube.com/watch?app=desktop&v=KHzGkBPXxLc>
2. <https://www.youtube.com/watch?v=AdhcrmcZcSA>
3. <https://www.youtube.com/watch?v=HSV-UFGvycc>
4. <https://www.youtube.com/watch?v=dqMkWdwjVSs>

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Quiz, Seminar.

Course Designer:

Dr. N. Priyadharsini

COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
PS23E03	BIO MEDICAL INSTRUMENTATION I	Theory	58	2	-	5

Preamble

The objective of this paper is to introduce the students the basic knowledge of transducers, recorders and other bio medical instruments and devices.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Remember the basic principles of biomedical transducers, electrodes and instrumentation systems used in medical applications.	K1
CLO2	Understand the working of different biomedical transducers.	K2
CLO3	Apply concepts of biopotential recording systems like ECG and EEG.	K3
CLO4	Analyse signals from cardiovascular and neurological systems.	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	M	S	M	S	M
CLO2	S	M	S	M	S	M
CLO3	M	S	S	S	S	M
CLO4	M	S	S	S	S	S

S- Strong; M-Medium;

Syllabus**Unit I****12 hrs****Electrodes and transducers**

Transducers for medical applications-Active transducers-Passive transducers-Electrode theory-Components of biomedical instrument system-electrodes – microelectrodes - chemical electrodes

Unit II**12 hrs**

Different types of transducers-Magnetic induction type-piezoelectric type-thermoelectric type-capacitive transducers-inductive transducers- linear variable differential transformer

Unit III**11 hrs****Biopotential Recorders-I**

Cardiovascular instrumentation-characteristics of recording system-electrocardiography- origin of cardiac potentials-P,R,T,S-T,Q waves-ECG lead configurations-ECG recording set up- Practical considerations for ECG recording

Unit IV**12 hrs****Biopotential Recorders-II**

Analysis of ECG signals-Phonocardiography-Heart sounds-Physical characteristics of heart sounds-Recording set up-Relationship between the heart sounds and function of the cardiovascular system-Medical applications-special; applications of phonocardiogram Electroencephalograph (EEG)-recording of evoked potentials-electromyograph

Unit V**13 hrs****Physiological Assist devices**

Pacemakers-Pacemaker batteries-Artificial heart valves-Defibrillators-Nerve and muscle stimulators-Heart lung machine-Kidney machine.

Text Book

S. No	Authors	Title	Publishers	Year & Edition
1	Arumugam. M	Biomedical Instrumentation (units II,III, IV& V)	Anuradha Publications	2007, 1 st Edn
2	James Cameron	Medical Physics (Units III , IV& V)	Wiley publications	1978, 1 st Edn

Reference Books

S. No	Authors	Title	Publishers	Year & Edition
1	Leslie Cromwell, Fred J Weibell and Erich A.Pfeiffer	Biomedical Instrumentation and Measurements	Prentice Hall of India	1992, 2 nd Edn

Reference for E-content:

1. <https://www.youtube.com/watch?v=PA-qoyEMLuY>
2. <https://www.youtube.com/watch?v=TLhtXQ7Wizo>
3. <https://www.youtube.com/watch?v=EONqnZS7N0c>
4. <https://www.youtube.com/watch?v=ocSd7opNFD8>

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Quiz, Seminar.

Course Designer:

Dr. G. Praveena

SEMESTER V
ADVANCED LEARNERS' COURSE I
ENERGY PHYSICS - I
Subject Code: PS16AC1
Credits: 5

Objective: To make the students understand the basic principles and applications of different forms of energy.

Unit-I

Electrical Energy

Application of heating effect of electricity: Electric heater– Electric radiation and Electric Iron – Electric welding and electric furnace –Carbon arc – Electric Lamp – Efficiency of a Lamp – Measurement of Electric Power -

Principle of production of A.C. – A.C generators – D.C generators -D.C Motors.

Unit – II

Magnetic Energy

Magnetic field (B), magnetization (M), magnetic field intensity H, Magnetic flux and flux density, magnetic materials and magnetization, Induction heater-magnetic hysteresis.

Unit III

Photovoltaics & Microwaves

The photovoltaic effect -analysis of photovoltaic cells-efficiency of solar cells-design of photovoltaic system-single crystal and polycrystalline cells-Reflex Klystron- Magnetron - Microwave oven.

Unit IV

Thermal Energy

Distribution of Energy in the thermal spectrum – Lummer and Pringsheim Experiment and its Results – Wien's Displacement Law and Radiation Law – Rayleigh Jean's Law -Planck's Radiation Law – Deduction of Wien's Law and Rayleigh – Jean's Law from Planck's law- Kirchoff's Law of radiation and its proof.

Unit V

Molecular Energy & Nuclear Energy

Maxwell's law of equipartition of Energy – Molar Specific heat capacity at constant volume and constant pressure – Total Internal Energy and Ratio of Heat capacities in monoatomic gas, Diatomic gas. Chain reaction-Controlled & uncontrolled Nuclear fission, energy released in atom bomb . Nuclear fusion-Thermo nuclear reactors- Hydrogen bomb.

Text Book

S. No	Authors	Title	Publishers	Year & Edition
1	Brijlal Subramaniam	Heat & Thermodynamics Units I, &II	S.Chand and Co.	2012, 16 th Edn
2	Dennis Roddy &John Coolen	Electronic Communication (Unit III)	Prentice Hall India	1995, 4 th Edn
3	Subir Kumar Sarkar	Optical Fibre and Fibre optic communication systems Unit III)	S Chand & Co	2001, 2 nd Edn
4	Singhal.S.S, Agarwal. J.P. and Sathya prakash	Heat, Thermodynamics and Statistical Physics Units I, &II	Pragati Prakashan	1985, 9 th Edn
5	Subrahmaniam. N & Brijlal S	Atomic & Nuclear Physics Unit V	Chand & Company Ltd	2008, 3 rd Edn

ADVANCED LEARNERS' COURSE II
EXPERIMENTAL TECHNIQUES & DATA ANALYSIS - I
Subject Code: PS16AC2
Credits: 5

Objective: To make the students understand the principles involved in measuring devices, error measurements, the standards of measurements, performance characteristics of an instrumentation system, transducers, and vibration sensing devices.

Unit – I

Basic Concept of Measurement & Transducers

Introduction – System configuration – Problem Analysis – Basic Characteristics of measuring devices, Calibration.

Transducers: capacitive, transducer-Photoelectric effect – Photoconductive Transducers- Piezoelectric transducers. Temperature and pressure transducers.

Unit – II

Measurement of errors: accuracy, precision, Significant Figures –types of errors-Statistical Analysis-Probability of errors-limiting error

Unit – III

Standards of measurements: classification of standards- Standards for Mass, Length and Volume- time and frequency standards, electrical standards, standards of temperature and luminous intensity.

Unit – IV

Performance Characteristics of an Instrumentation system

Introduction – Generalized measurement – Zero order system – Second order system – Dead time element – Specification and testing of dynamic response.

Unit – V

Vibration

Random Vibration – Shock – Analyzing vibration sensing devices – Generalized second order system – Absolute displacement – Absolute velocity and acceleration vibrating sensing devices –Velocity transducer – Banded strain gauge accelerators – Piezo electric accelerometer

Text Book

S. No	Authors	Title	Publishers	Year & Edition
1	Hefnick .A.O and Cooper. W.D	Modern Electronic Instrumentation and Measurement Techniques Unit – II & III	Prentice Hall India Publications	1981, 16 th Edn
2	C.S. Rangan, G.R. Sharma and VSV Mani	Instrumentation Devices and Systems Unit – I, IV & V	Tata McGraw Hill Publications	1983, 2 nd Edn

COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
PS23C07	OPTICS AND SPECTROSCOPY	THEORY	73	2	-	5

Preamble

- This course provides students with a working knowledge of optical physics, including diffraction, interference, polarisation and spectroscopy, laser physics. This paper aims to impart a detailed knowledge in Optics & Spectroscopy.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	List the basic ideas in image formation and the defects involved.	K1
CLO2	Understand the central concepts and basic formalisms of interference, diffraction, polarisation and basics of spectroscopy.	K2
CLO3	Use of tools needed to formulate problems in optics and spectroscopy.	K3
CLO4	Gain Fundamental knowledge in lasers, holography and Raman effect.	K3
CLO5	To impart knowledge related to the concepts of spectroscopy.	K3

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	S	L	L	L
CLO2	S	M	S	S	M	M
CLO3	M	S	M	S	S	S
CLO4	S	S	S	S	M	M
CLO5	S	M	M	S	M	M

S- Strong; M-Medium; L-Low

OPTICS AND SPECTROSCOPY - PS23C07 – 73 HRS

Unit I

(15 Hrs)

Geometrical Optics

Spherical aberration in lenses – reducing spherical aberration –Coma – Aplanatic lens- Oil immersion objective- Astigmatism –Curvature – Distortion – Dispersion – Angular and Chromatic dispersion – Combination of prisms to produce (i) dispersion – without deviation (ii) deviation without dispersion – Achromatism in lenses – Achromatic combination of lenses –(i) in contact (ii) and separated by a distance –Eye pieces-Ramsden's and Huygen's eyepieces

Unit II

Interference

(15 Hrs)

Interference in thin films due to reflected and transmitted light – Fringes due to wedge shaped films – Newton's rings- Determination of wavelength of light- Refractive index of liquid– Michelson's interferometer- Applications – Determination of Wavelength, Thickness of a thin transparent films, Refractive index of gases – Fabry-Perot Interferometer – Antireflection coatings – Interference filters

Unit III

(14 Hrs)

Diffraction

Rectilinear propagation of light- Zone plate- action and construction- comparison with convex lens-Fraunhofer diffraction – Diffraction at single slit, double slit, Diffraction grating

Polarization

Double refraction – Huygen's explanation in uniaxial crystals – production and detection of plane, circular and elliptically polarized light – Optical activity – Fresnel's explanation – Laurent's half shade polarimeter.

Unit IV

(14 Hrs)

Quantum Optics Lasers

Spontaneous and Stimulated emission – Einstein's A & B coefficients, Population Inversion - Metastable states - Optical pumping- Modes of resonators and coherence length, Ruby & He – Neon lasers

Holography

Basic principle-Making a Hologram-Reconstruction of the image from the Hologram- Mathematical theory-Applications of Holography-Holographic Interferometry & Microscopy

Unit V

(15 Hrs)

Spectroscopy

Photoelectric effect-Laws of Photoelectric Emission-Einstein's photoelectric equation - Compton effect - X ray spectra- Continuous and Characteristic spectra – Moseley's law – Application – Molecular spectra – Spectra of diatomic molecules – Pure rotation spectra- Vibration, rotation spectra- Selection rules- Raman effect – Experimental study – Raman effect in solids and gases Explanation of Raman effect – Application of Raman effect in a molecular spectra

Text Book

S. No	Authors	Title	Publishers	Year and Edition
1	Brijlal and Subramaniam	A Text Book of Optics (Units I, II & III)	S. Chand & Co	2006 and 23 rd edn
2	Murugesan. R	Modern Physics (Unit IV & V)	S. Chand & Co	2013 and 17 th edn
3	P.K. Chakrabarti	Geometrical and Physical Optics (Unit V)	New Central Book Agency	2005 and 3 rd edn

Books for Reference

S. No	Authors	Title	Publishers	Year and Edition
1	R. Murugesan	Optics and Spectroscopy	S. Chand & Co	2012 and 8 th edn

Pedagogy

- Chalk and Talk lectures, Group Discussion, Seminar, Interaction, Power Point Presentation

Course Designer

Mrs. S.Subanya

COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
PS23C08	QUANTUM MECHANICS	THEORY	73	2	-	5

Preamble

- The aim of this course is to make students acquire sufficient knowledge in Properties of matter waves, Wave equation, Schrodinger equation and applications, Operator formalism.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Recognize basic terms in Quantum Mechanics.	K1
CLO2	Understand the basic principles of quantum particles.	K2
CLO3	Apply basics to construct and solve one particle equations	K3
CLO4	Ability to design and construct particle equations in the free and bound states as well as to analyze and interpret the results.	K4
CLO5	To understand the fundamentals and concepts in operator formalism	K5

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	M	L	L	L
CLO2	S	S	S	S	S	M
CLO3	S	S	S	S	M	S
CLO4	S	S	S	S	M	M
CLO5	S	S	S	S	M	M

S- Strong; M-Medium; L-Low

QUANTUM MECHANICS - PS23C08 – 73 HRS

Unit I

(15 Hrs)

Emergence of quantum concepts

Inadequacies in Classical Physics - Quantum Theory of Light (Review)-Matter waves- De Broglie Hypothesis- Davisson -Germer Experiment-G. P. Thomson experiment-Wave-Particle Duality-Wave description of Particles by Wave Packets- Group and Phase Velocities and their relation- Heisenberg's uncertainty principle (physical significance- Elementary proof, Uncertainty Relations) - Gamma ray microscope –Non-Existence of electrons in the nucleus.

Unit II

(15 Hrs)

Elements of Quantum Mechanics

Basic Postulates and Formalism- Schrödinger Time-independent Wave Equation (Stationary States)- Time dependent wave equation - Wave function for a free particle - Properties - Interpretation -Requirements of wave function – Normalization - Linearity and Superposition- Probability Current Density - Definition of an operator in Quantum mechanics - Eigen value and Eigen value equation -Expectations value – Ehrenfest's theorem

Unit III

Eigen Value Problem (14 Hrs)

Free particle - Particle in an infinitely deep 1D potential well - Step potential –Barrier Potential problem - Barrier penetration and tunnel effect (α -emission)-One dimensional rectangular potential well-Harmonic oscillator (one-dimension)

Unit IV

(14 Hrs)

Schrodinger equation in three dimensions

Particle in an infinitely deep three dimensional quantum well- Schrodinger's equation in spherical polar co-ordinate system –Construction of Schrodinger equation for Hydrogen atom- Importance of one electron Schrodinger equation.

Unit V

(15 Hrs)

Operator Formalism

Linear operator –Hermitian operator (Condition and examples) - Operators for momentum, kinetic energy and total energy –Hermitian character of Hamiltonian operator-Commutator - commuting and non-commuting operators – commutation relation between position and momentum, Hamiltonian - Orbital Angular momentum operator – commutation relation between L_x , L_y , L_z and L - Ladder Operators L^+ and L^- - Commutation relation between L and position.

Text Books

S. No	Authors	Title	Publishers	Year and Edition
1	S.P.Singh, M.K. Bagde and Kamal Singh.	Quantum Mechanics	S. Chand & Co.	1983 and 2 nd edn

2	Sathya Prakash	Quantum Mechanics	Kedarnath & Ramnath Co	2007 and New edn
3	R. Shankar	Principles of Quantum Mechanics	Springer	2010 and 2 nd edn
4	G. Aruldas	Quantum Mechanics	PHI	2013 and 2 nd edn

Books for Reference:

S. No	Authors	Title	Publishers	Year and Edition
1	R.Eisberg& R. Resnick	Quantum Physics Of Atom,Molecules, Solids, Nuclei & Particles	John Wiley	2006 and 2 nd edn
2	Keith Gibbs	Advanced Physics	Cambridge University Press	1991 and 2 nd edn
3	KAIL Wijewardena Gamalath – Landau,L.D., and LifshitzE.M.,	Introduction to Vector spaces in Physics	Pergamon, NY	1974 and 1 st edn
4	R. Shankar	Principles of Quantum Mechanics	Springer	2010 and 2 nd edn
5	F. Schwabl	Quantum Mechanics	Springer	1995 and 4 th edn

Pedagogy

- Chalk and Talk lectures, Group Discussion, Seminar, Interaction and Power Point Presentation

Course Designer

Dr.G.Praveena

COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
PS23C09	ATOMIC AND NUCLEAR PHYSICS	THEORY	73	2	-	4

Preamble

- The aim of this course is to provide a coherent and concise coverage of traditional atomic and nuclear physics.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Acquire knowledge of the fundamental physics underpinning atomic and nuclear physics	K1
CLO2	Understand the concepts and potential applications of atomic and nuclear physics	K2
CLO3	Apply general considerations of quantum physics to atomic and nuclear system	K3
CLO4	Analyse production and decay reactions for fundamental particles	K4
CLO5	Expand and evaluate the theoretical predictions for nuclear reactions.	K5

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	S	S	L	L
CLO2	S	S	S	S	S	M
CLO3	S	S	S	S	M	S
CLO4	S	S	S	S	L	M
CLO5	S	S	S	S	M	M

S- Strong; M-Medium; L-Low

ATOMIC AND NUCLEAR PHYSICS - PS23C09 – 73 HRS

Unit I

Atomic structure: (15 Hrs)

Rutherford's experiment on scattering of alpha particles-theory of alpha particle scattering-Experimental verification- Bohr model of the atom-Effect of nuclear motion on atomic spectra -evidences in favour of Bohr's theory-critical potentials-atomic excitation – Experimental determination of critical potential - Frank and Hertz experiment- Sommerfeld's relativistic atom model – Vector atom model- Quantum numbers associated with the Vector atom model, Coupling Schemes.

Unit II

Optical Spectra and electronic structure: (15 Hrs)

Pauli's exclusion principle - Some examples of electronic configuration with their modern symbolic representation - Magnetic moment due to orbital and spin motion – Stern Gerlach Experiment – Optical spectra- Fine structure of sodium D line- Zeeman effect-Experimental arrangement, Expression for Zeeman Shift- Quantum mechanical explanation of the normal Zeeman effect - Anomalous Zeeman effect- Stark effect.

Unit III (15 Hrs)

Nuclear Models

Introduction to nucleus - Models of Nuclear structure - Liquid Drop model, Semi empirical mass formula, Shell model, Magic Nos.

Particle accelerators and detectors

Linear accelerators, Cyclotron, Betatron, GM counter, Ionisation chamber

Radioactivity

Natural radioactivity- properties of alpha, beta and gamma rays, Geiger – Nuttal Law, Gamow's theory of α - decay, β - ray spectra, magnetic Spectrograph, origin of line and continuous spectra, Neutrino theory of β – decay, κ - electron capture, Gamma ray – introduction, Origin, nuclear isomerism, internal conversion, Mossbauer effect.

Unit IV (14 Hrs)

Artificial Transmutation of Elements

Discovery of Artificial Transmutation – Rutherford's Experiment, Bohr's theory of nuclear disintegration, Q – value equation- nuclear reactions, energy balance in nuclear reactions.

Nuclear Transmutation

Transmutation by (i) Alpha Particles (ii) Protons (iii) Deutrons (V) Neutrons, Scattering cross section, and its determination.

Artificial radioactivity

Discovery-preparation of radio elements-applications of radio isotopes.

Unit V (14 Hrs)

Nuclear fission and fusion

Nuclear fission, energy released in fission, chain reaction, Atom bomb, nuclear reactor, Breeder reactor, Nuclear fusion, Source of Stellar energy, thermonuclear reactions, transuranic elements.

Elementary Particles

Introduction, classification of elementary particles, four fundamental interactions, Elementary particle quantum numbers, conservation laws & Symmetry, Quark model.

Text Book

S. No	Authors	Title	Publishers	Year and Edition
1	Murugesan R	Modern Physics	S.Chand & Co	1994 and 9 th edn

Books for References

S. No	Authors	Title	Publishers	Year and Edition
1	H.Semat and J.R.Albright	Introduction to Atomic and Nuclear Physics	Chapman and Hall Ltd	1972 and 5 th edn
2	S.N. Ghoshal	Atomic and Nuclear Physics	S. Chand & company	1900 and 1 st edn
3	C.L.Arora	Atomic and Molecular Physics	S Chand & company Ltd	1999 and 1 st edn
4	Beiser	Concepts of Modern Physics	Tata McGraw Hill Publishers	2002 and 6 th edn
5	Roy R.R& Nigam	Nuclear physics	Wiley Eastern Ltd	2017 and 5 th edn
6	Kenneth S Krane	Modern Physics	John Wiley and Sons,	2012 and 3 rd edn

Pedagogy

- Chalk and Talk lectures, Group Discussion, Seminar, Interaction and Power Point Presentation

Course Designers

Dr. B.Punithaveni

COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
PS23E04	MICROPROCESSOR	THEORY	88	2	-	5

Preamble

- This course deals with the basic concepts of microprocessor, programming instructions and interfacing concepts.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Basic ideas on microprocessor, memory and I/O devices	K1
CLO2	Be familiar with the basic concepts of microprocessor architecture and interfacing	K2
CLO3	To impart skills in the programming instruction sets of microprocessor	K2
CLO4	Apply the programming instructions to perform simple programs using microprocessor	K3
CLO5	Finding solution for real time applications	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	S	S	M	M
CLO2	S	S	S	S	M	M
CLO3	S	S	S	S	S	S
CLO4	S	M	M	S	S	S
CLO5	S	M	M	S	S	S

S- Strong ; M-Medium ; L-Low

MICROPROCESSOR - PS23E04 – 88 HRS

Unit I

(18

Hrs)

Microprocessors—Microprocessor instruction set and Computer Languages – Microprocessor Architecture and its operations – Memory – Input and Output devices – Review: Logic devices for interfacing – 8085 MPU – Memory Interfacing.

Unit

II

(17Hrs)

The 8085 Programming Model – Instruction Classification – Instruction and Data format - How to write, Assemble and Execute a simple program – Overview of 8085 instruction Set- Addressing mode

Unit

III

(17Hrs)

Programming Techniques: Looping, counting and indexing – Additional data transfer and 16 bit Arithmetic instructions – Logical Operations: Rotate and Compare – Stack and Subroutines- BCD to binary –binary to BCD conversion-binary to ASCII and ASCII to Binary code conversion.

Unit IV

(18 Hrs)

8085 interrupts – 8255A Programmable peripheral interface –Block diagram – Mode 0: Simple Input or Output – BSR Mode – Mode1: Input or Output with Handshake – Mode2: Bidirectional Data transfer- Interfacing keyboard and Seven segment display – 8254 programmable interval timer – Block diagram – Programming the 8254 – 8254 as a counter - Modes.

Unit V

(18Hrs)

8259A programmable interrupt controller – Block diagram – Interrupt operations –Priority modes and other features - DMA Controller – Basic concepts in serial I/O – Software controlled asynchronous serial I/O – 8251A Programmable Communication Interface.

Text Book

S. No	Authors	Title	Publishers	Year and Edition
1	Ramesh S.Gaonkar	Microprocessor Architecture, Programming and Applications with The 8085	Penram International Publications	2000 and 4 th edn

Books for Reference

S. No	Authors	Title	Publishers	Year and Edition
1	Douglas V. Hall	Microprocessors and digital systems	McGraw Hill	1983 and 1 st edn
2	Mohammad Refiguzzaman	Microprocessor and microcomputer based system Design	Universal bookstall	1990 and 2 nd edn

Pedagogy

- Chalk and Talk lectures, Group Discussion, Seminar, Interaction and Power Point Presentation

Course Designer

Dr.J.Balavijayalakshmi

COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
PS23E05	MATERIALS SCIENCE - II	THEORY	88	2	-	5

Preamble

- The aim of this course is to introduce the students to electron theory of solids and different types of materials based on their properties.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	List the basic concepts of conductors ,dielectric	K1
CLO2	Understand the basic laws of magnetism	K2
CLO3	Provide the students with an idea of dielectric and magnetism which are essential tools in problem solving.	K2
CLO4	Solve problems based on electron theory of solids and for different materials	K3
CLO5	Find applications of the superconductors.	K3

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	S	M	S	L
CLO2	S	S	S	S	S	M
CLO3	S	S	S	S	S	S
CLO4	S	M	M	S	S	S
CLO5	S	M	S	S	S	S

S- Strong; M-Medium; L-Low

MATERIALS SCIENCE – II - PS23E05 – 88 HRS

Unit I

Electron Theory of Solids (18 Hrs)

Introduction-the classical free electron theory and the quantum free electron theory- Electron energy in metals and Fermi energy- density of states- anti-symmetric nature of the wave functions of the Fermi system – explanation of covalent bonding in crystals- electron in a periodic potential- energy bands in solids- Brillouin zones – distinction between metals, insulators and semiconductors- effect mss of electron and concept of hole – the Hall effect.

Unit II

(17 Hrs)

Conducting Properties of materials

Introduction- atomic interpretation of ohms law- relaxation time and electrical conductivity – relaxation time – collision time- mean free path- heat developed in a current carrying conductor- sources of resistivity of metals and alloys- thermal conductivity- Wiedemann Franz law- thermal expansion- electrical conductivity at high frequencies- geometrical and magnetic field effects on electrical conductivity- variation of electrical resistivity due to mechanical stress (strain gauge)- different types of conducting materials.

Unit III

(17 Hrs)

Dielectric Properties of materials

Introduction- fundamental definition in dielectric – different types of electric polarization- frequency and temperature effects on polarization- dielectric loss- local field or internal field – Clausius- Mossotti relation – determination of dielectric constant – dielectric break down- properties and different types on insulating materials – Ferro electric materials

Unit IV

(18 Hrs)

Magnetic Properties of materials

Introduction- different type soft magnetic materials – classical theory of dia magnetism (Langevin theory)- Langevin theory of para magnetism- Weiss theory of para magnetism- Weiss of Ferro magnetism (molecular field theory on field magnetism) – Heisenberg interpretation on internal field and quantum theory of ferromagnetism- domain theory of Ferro magnetism- hard and soft materials

Unit V

(18 Hrs)

Superconducting materials

Introduction- explanation for the occurrence of super conductivity – general properties of super conductors- other general observations- types of superconductors- applications of superconductors.

Text Book

S. No	Authors	Title	Publishers	Year and Edition
1	Arumugam. M	Material Science	Anuradha agencies- Kumbakonam	1990 and 1 st edn

Books for Reference

S. No	Authors	Title	Publishers	Year and Edition
1	Raghavan	Materials and engineering	Prentice Hall of India	1990 and 3 rd edn
2	Vijaya & Rangarajan	Materials Science	Tata McGraw Hill Publishing Company Ltd	2005 and 1 st edn
3	Raghavan	Materials Science	Prentice Hall	1990 and 13 th edn

Pedagogy

- Chalk and Talk lectures, Group Discussion, Seminar, Interaction and Power Point Presentation

Course Designer

1. Ms. S.Subanya

COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
PS23E06	BIO MEDICAL INSTRUMENTATION - II	THEORY	88	2	-	5

Preamble

- The objective of this paper is to introduce the students the basic knowledge of transducers, recorders and other bio medical instruments and devices.

Course Learning Outcomes

CLO Number	CLO Statement	Knowledge Level
CLO1	Recognize the technical vocabulary associated with biomedical Instrumentation.	K1
CLO2	Understand the uses of various instruments in medicine.	K2
CLO3	Understand the canonical structure of biomedical instrumentation systems.	K2
CLO4	Review the static and dynamic performance characteristics for instrumentation systems.	K3
CLO5	Understand the problem and the ability to identify the necessity of equipment to a specific problem.	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	M	S	L	L	L
CLO2	S	S	S	S	M	M
CLO3	S	S	S	S	M	M
CLO4	S	S	S	S	S	M
CLO5	S	S	S	S	S	S

S- Strong; M-Medium; L-Low

BIO MEDICAL INSTRUMENTATION – II - PS23E06 – 88 HRS

Unit I

(18 hrs)

Electrodes and transducers

Transducers for medical applications-Active transducers-Passive transducers-Electrode theory-Components of biomedical instrument system-electrodes- microelectrodes-chemical electrodes

Unit II

(17 hrs)

Different types of transducers-Magnetic induction type-piezoelectric type-thermoelectric type-capacitive transducers-inductive transducers- linear variable differential transformer

Unit III

(17 hrs)

Biopotential Recorders-I

Cardiovascular instrumentation-characteristics of recording system-electrocardiography- origin of cardiac potentials-P,R,T,S-T,Q waves-ECG lead configurations-ECG recording set up-Practical considerations for ECG recording-

Unit IV

(18 hrs)

Biopotential Recorders-II

Analysis of ECG signals-Phonocardiography-Heart sounds-Physical characteristics of heart sounds-Recording set up-Relationship between the heart sounds and function of the cardiovascular system-Medical applications-special applications of phonocardiogram Electroencephalograph(EEG) -recording of evoked potentials-electromyograph

Unit V

(18 hrs)

Physiological Assist devices

Pacemakers-Pacemaker batteries-Artificial heart valves-Defibrillators-Nerve and muscle stimulators-Heart lung machine-Kidney machine.

Text Book

S. No	Authors	Title	Publishers	Year and Edition
1	Arumugam. M	Biomedical Instrumentation (units II,III, IV& V)	Anuradha Publications	2007 and 1 st edn
2	James Cameron	Medical Physics (Units III , IV& V)	Wiley publications	1978 and 1 st edn

Books for Reference

S. No	Authors	Title	Publishers	Year and Edition
1	Leslie Cromwell, Fred J Weibell and Erich A.Pfeiffer	Biomedical Instrumentation and Measurements	Prentice Hall of India	1992 and 2 nd edn

Pedagogy

- Chalk and Talk lectures, Group Discussion, Seminar, Interaction and Power Point Presentation

Course Designer:

1. Dr.M.Lavanya

ADVANCED LEARNERS' COURSE II

COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
PS16AC3	ENERGY PHYSICS - II	THEORY		SELF STUDY		*5

Objective: This paper aims to introduce the different nonconventional energy sources and the methods of harnessing energy from them

Unit I

Solar Energy

Solar radiation – Solar radiation outside the earth's atmosphere Solar radiation at the earth's surface – Solar Thermal Energy – Solar Thermal devices and systems: Solar water heater – Sub components of solar water heater – Solar Cooker and its merits and demerits.

Unit II

Wind Energy

Power in the wind – Types of wind energy systems – Horizontal axis wind Turbine – Vertical axis wind Turbine.

Unit III

Ocean Energy

Tidal Energy – Ocean Thermal Energy Conversion (OTEC) – Closed Cycle OTEC system – Open Cycle OTEC System

Unit IV

Energy from Biomass

Biomass feedstock-water material-energy crops- important properties of biomass-conversion of biomass to gaseous fuels-anaerobic digestion-thermal gasification.

Unit V

Geothermal Energy

Introduction- Estimates of Geothermal power – Nature of Geothermal fields – Geothermal sources – Advantages and Disadvantages of geothermal energy- Applications of geothermal energy.

Text Book

S. No	Authors	Title	Publishers	Year and Edition
1	Sukhatme S.P	Solar Energy (Unit I)	Wiley publications	1975 and 1 st edn
2	Rai. G.D	Non Conventional Sources of Energy	Khanna Publishers	2009 and 1 st edn
3	Rai G.D	Solar Energy Utilization (Units II & III)	Khanna Publishers	1987 and 1 st edn
4	Yogi.D Goswami, Frank Krieth and Jan F. Krelder	Principles of Solar Engineering (Units IV & V)	Taylor & Francis	2003 and 1 st edn

ADVANCED LEARNERS' COURSE II

COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
PS16AC4	EXPERIMENTAL TECHNIQUES AND DATA ANALYSIS - II	THEORY		SELF STUDY		*5

Objective: To make the students understand the concepts of data acquisition systems, data conversion, the principles of working of input and output devices, displays, amplifiers, Electronic measuring and testing instruments.

Unit – I

Data Acquisition and Conversion

Introduction – Signal conditioning of the inputs – Single channel data acquisition systems –Multi channel data acquisition system – Data conversion – Digital of Analog converter – Analog to Digital converter – Multiplexer and Sampling hold circuits.

Unit II

Input – Output Devices and Displays

Introduction – Analog display and recorder – Graphic recorder – Optical oscilloscope – self balancing potentiometer – X-Y recorder – Magnetic recorder – Digital input – output devices –Punched card-paper type – output equipments – Line printer – Digital tape recording – Disk files and floppy disk.

Unit III

Electronic Measuring Instruments:

Q-meter- Vector impedance meter- Digital frequency meter – Digital voltmeter – Phase meter- RF power and voltage measurement –Power factor meter – Vector voltmeter.

Unit –IV

Amplifiers:

Instrumentation amplifiers,- isolation amplifiers-chopper amplifiers – voltage to frequency and frequency to voltage converters – frequency multipliers – logarithmic amplifiers.

Unit –V

General purpose electronic Test Equipment:

Oscilloscope : Basic principles – CRT features – Basic principles of signal displays – Block diagram of oscilloscope – Simple CRO – Vertical amplifier – Horizontal deflecting system –Delay line in triggered sweep – CRT connection – Dual beam CRO – Dual beam oscilloscope –Storage oscilloscope measurement of frequency, capacitance, inductance and Voltage wave analysers and Spectrum analysers.

Text Book

S. No	Authors	Title of the Book	Publishers	Year and Edition
1	Hefnick .A.O and W.D. Cooper	Modern Electronic Instrumentation and Measurement Techniques (Unit III)	Prentice Hall India Publications	1978 and 1 st edn
	C.S. Rangan, G.R. Sharma and VSV Mani	Instrumentation Devices and Systems (Unit I,II,IV, V)	Tata McGraw Hill Publications	1983 and 2 nd edn

COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
PS23CP4	PHYSICS PRACTICALS IV	PRACTICAL	-	-	90	4

Preamble

- This course helps the student to acquire practical knowledge in making use of the 8085 ALP and its logical operation also develops the program writing skills using C language. The concepts that are learnt in the lecture sessions will be translated to the laboratory sessions, thus providing a hands-on learning experience.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Define the primary functions of 8085 ALP programming	K1
CLO2	Understand the theoretical concepts and their physical significance	K2
CLO3	Apply the theory to find the solutions of practical problems	K3
CLO4	Analyze the problem studied through analytical calculation	K5
CLO5	Acquire problem solving skills and to create more problems based on physical concepts	K6

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	L	L	L	L
CLO2	S	S	S	S	M	M
CLO3	S	S	S	S	M	M
CLO4	S	S	S	S	S	S
CLO5	S	S	S	S	S	S

S- Strong; M-Medium; L-Low

PHYSICS PRACTICALS IV - PS23CP4 – 90HRS

List of Experiments (Any 16)

1. 8085 ALP for 8 bit addition using Memory and register
2. 8085 ALP for 8 bit subtraction using Memory and register
3. 8085 ALP for 8 bit multiplication and division
4. 8085 ALP using control instructions (Increment/Decrement & Rotate)
5. 8085 ALP for finding the biggest and smallest element in the array
6. 8085 ALP to sort the array in ascending and descending order
7. 8085 ALP for BCD to Binary conversion
8. 8085 ALP for Binary to BCD conversion
9. 8085 ALP for Binary to ASCII conversion
10. 8085 ALP for ASCII to Binary conversion.
11. RS and D Flip Flops using NAND gates
12. Thevenin Theorem
13. Norton's Theorem
14. High/ Low/ Band Pass filter
15. Construction of basic gates using Diodes and Transistor
16. Solving Simple Boolean equation using ICs.
17. Half Wave and Full Wave rectifier
18. Obtain the energy of various atoms namely H, O and N in their neutral, cationic and anionic states.
19. Obtain the energy of diatomic molecules such as H₂, O₂ and NaCl by varying their interatomic distances.

Pedagogy

Demonstration and practical sessions

Course Designers:

Dr. N. Priyadharsini

Dr. G. Praveena

COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
PS21SB02	NON CONVENTIONAL ENERGY RESOURCES	THEORY	43	2	-	3

Preamble

- The main objective of this course is to impart theoretical knowledge non-conventional sources of energy to the students and provide them with field exposure and hands-on learning.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Familiarize with the basics of renewable energy sources	K1
CLO2	Understand the generation of power from non conventional energy sources available in the geographical region.	K2
CLO3	Apply and demonstrate the acquired knowledge through hands on training.	K3
CLO4	Analyse the environmental aspects of solar, wind and biomass energy resources and their prospects and limitations.	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	M	M	M	S	S
CLO2	M	S	S	M	M	S
CLO3	S	M	S	S	S	S
CLO4	S	S	S	S	S	M

S- Strong; M-Medium; L-Low

NON CONVENTIONAL ENERGY RESOURCES - PS21SB02 – 45 HRS

Unit I

(8 Hrs)

Introduction to Energy Sources: Energy sources and their availability – Renewable energy sources - non-conventional energy sources. An overview of Wind Energy, Tidal Energy, solar energy, biomass, geothermal energy and hydroelectric energy – Advantages of Renewable energy sources.

Unit II

(8 Hrs)

Solar energy: Solar constant – Solar Radiation at the earth's surface - solar radiation geometry – solar radiation Measurements – Pyrheliometers – Pyranometers – schematic diagrams and principles of working - applications of solar energy – solar water heating – solar cooking – solar furnace – agricultural and industrial process heat- solar green house.

Unit III

(8 Hrs)

Wind Energy: Introduction – Fundamentals of Wind energy – Basic components of wind energy conversion – Wind data and energy estimation - Site selection consideration - Classifications – Advantages – Disadvantages –Wind energy collectors - Applications of Wind energy.

Bio Energy: Biomass energy – Biomass conversion process - Photosynthesis – classification.

Unit IV: Field Visit

(10 Hrs)

Students shall visit to Energy Resource laboratories in Universities/Research Organizations/ nearby industries to observe, understand the techniques and procedures adopted. Student to submit consolidated field visit reports for evaluation.

Unit V: Group Project

(11 Hrs)

(Any one mini-Project)

Design a miniaturised working model (energy resources/energy generation/conversion/ IoT based prototypes)

The project evaluation will be done by the HoD and Staff Co-ordinator by conducting viva voce Examination.

Text Book

S. No	Authors	Title of the Book	Publishers	Year and Edition
1.	G.D Rai	Non-Conventional Energy Sources	Khanna Publishers	2004 and 4th edn
2.	B H Khan	Non-Convention Energy Resources	McGraw Hill Education (India) Pvt. Ltd	2003 and 3 rd edn
3.	Subhas P Sukhatme	Solar energy	Tata McGraw Hill	1996 and 2 nd edn

4.	Kothari D.P, K.C. Singal and Rakesh Ranjan	Renewable energy sources and emerging Technologies	Prentice Hall of India	2008 and New edn
----	--	--	------------------------	------------------

Books for Reference

S. No	Authors	Title	Publishers	Year and Edition
1.	N.K.Bansal, Manfred Kleeman & Mechael Meliss	Renewable Energy Sources and Conversion Technology	Tata McGraw Hill	2004 and 9 th edn
2.	Ashok V	Non-Conventional Energy.	Desai Wiley Eastern Ltd, New Delhi.	2022 and 2 nd edn
3.	Ramesh R & Kumar K U	Renewable Energy Technologies	Narosa Publishing House New Delhi	2004 and New edn

Pedagogy

- Chalk and talk, PPT, Discussion, Assignment, Quiz, Seminar, Field visit, Project Submission

Course Designer

Mrs. S. Subanya

Resources of E-content

<https://archive.nptel.ac.in/courses/121/106/121106014/>