PSGR
 Krishnammal College for Women $\overline{\overline{K C W}}$

DEPARTMENT OF MATHEMATICS (AIDED)

CHOICE BASED CREDIT SYSTEM (CBCS) \& LEARNING OUTCOME BASED CURRICULUM FRAMEWORK (LOCF)

BACHELOR OF MATHEMATICS (B.Sc Mathematics)

$$
2021-2024
$$

Department of Mathematics

Programme: B.Sc. Mathematics (Aided)

2021-2024 Batch and Onwards

Programme Educational Objectives

Program Educational Objectives of B.Sc. Mathematics Programme is to enable the students to possess the following knowledge and skills

1. Mathematical knowledge

* The ability to demonstrate an understanding of the foundations of calculus, analysis and linear algebra as well as the ability to think logically and critically.
* The ability to explore the new emerging areas of science and engineering like Nonlinear Dynamics, Computational Mathematics and Cryptography.
* The ability to abstract general principles from examples.

2. Problem solving skills

* The ability to formulate, analyses, and solve problems through analytical and computational techniques and apply them to other disciplines when appropriate.
* The ability to plan, analyse and investigate industrial and societal problems using simulation tools and scientific computing

3. Research skills

* The ability to search for, locate, extract, organise, evaluate and use or present information that is relevant to a particular topic.
* The ability to carry out interdisciplinary research among the various basic sciences and engineering disciplines

4. Communication skills

* The ability to Display competence in oral, written, and visual communication with the help of relevant current technology

5. IT skills

* The ability to acquire necessary computer skills and knowledge to excel in their professional career in related disciplines

6. Employable skills

* The ability to translate their degree into a viable career path with the using their mathematical and statistical skills
* The ability to become leaders in their associated organization with team building and managing capabilities

PSGR Krishnammal College for Women

Department of Mathematics
Programme: B.Sc. Mathematics (Aided)

Programme Learning Outcomes

B.Sc. Mathematics will enable the students to be successful in
> A career that uses Mathematics in business, industry or government
$>$ Teaching Mathematics at all levels
$>$ Carrying out research in Mathematics or fields related to Mathematics.
> Competitive examinations like GATE, GRE, SET/NET, TNPSC, UPSC etc.
On the successful completion of the Programme, the following are the expected outcomes.

PLO Number	PLO Statement
PLO1.	Disciplinary Knowledge - Capability of demonstrating comprehensive knowledge of mathematics and understanding of one or more discipline.
PLO2.	Communication Skills -Ability to use mathematics as a precise language of communication in other branches of human knowledge
PLO3.	Critical thinking and analytical reasoning - Ability to employ critical thinking, analyze the results and apply them in various problems appearing in different branches of mathematics.
PLO4.	Information/digital literacy - Capability to use appropriate software's to mathematical investigations and problem solving
PLO5.	Self-directed learning: Ability to work independently and do in-depth study of various notions of mathematics.
PLO6.	Problem solving: -. Capability to solve various models such as growth and decay models, radioactive decay model, drug assimilation, LCR circuits and population network flow problems and to provide new solutions using the domain knowledge of mathematics acquired during this programme.
PLO7.	Lifelong learning: Ability to think, acquire knowledge and skills through logical reasoning and to inculcate the habit of self-learning.

DEPARTMENT OF MATHEMATICS

CHOICE BASED CREDIT SYSTEM (CBCS) \& LEARNING OUTCOME BASED CURRICULUM FRAMEWORK (LOCF) SYLLABUS AND SCHEME OF EXAMINATIONS - I - IV SEMESTER 2021 - 2024 Batch and Onwards

	$\underset{\sim}{\underset{\sim}{x}}$	Subject Code	Title of the Paper					Examination Marks			Credits
$\stackrel{y}{0}$								U	$\begin{aligned} & \text { M1 } \\ & \text { N } \end{aligned}$	$\underset{\sim}{e}$	
I	I	$\begin{array}{\|l\|} \hline \text { TAM2101/ } \\ \text { HIN2101/ } \\ \hline \text { FRE2101 } \\ \hline \end{array}$	Language Paper I	6	86	4	3	50	50	100	3
	II	ENG2101	English Paper I	6	86	4	3	50	50	100	3
	III	TH21C01	Advanced Calculus with SCILAB	5	71	4	3	50	50	100	4
	III	TH21C02	Differential Equations and Vector Analysis with SCILAB	5	71	4	3	50	50	100	4
	III	$\begin{array}{\|l} \text { TH21A01/ } \\ \text { HI21A01/ } \\ \text { ES21A01/ } \\ \text { ES21A02/ } \\ \text { EG21A01 } \end{array}$	Allied Mathematical Statistics -I with R/Principles of Modern Government/Indian Economic Development/International Marketing/English through Classics	6	86	4	3	50	50	100	5
	IV	NME19B1/ NME19A1/ NME20WS/ NME20GS/ NME20AS/ NME21ES	Basic Tamil/ Advanced Tamil /Women Studies/ Gandhian studies /Ambedkar studies/Introduction to Entrepreneurship	2	28	2	3	$\begin{gathered} 50 / 5 \\ 0 \end{gathered}$	50/50	100/100	2
II	I	$\begin{aligned} & \hline \text { TAM2102/ } \\ & \text { HIN2102/ } \\ & \text { FRE2102 } \\ & \hline \end{aligned}$	Language Paper II	6	86	4	3	50	50	100	3
	II	ENG2102	English Paper II	5	71	4	3	50	50	100	3
	III	TH21C03	Calculus of transforms with SCILAB	5	71	4	3	50	50	100	4
	III	TH21C04	Number Theory And Summation of Series with MAPLE	5	71	4	3	50	50	100	4
	III	TH21A05/ ES21A03/ ES21A04/ ES21A05/ HI21A02/ EG21A02	Allied - Mathematical Statistics II /Economic Analysis/Econometrics/Monet ary Economics/Indian Constitution/English	6	86	4	3	50	50	100	5

| | | throughClassics II | | | | | | |
| :---: | :---: | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

	$\underset{\sim}{\underset{\sim}{*}}$	Subject Code	Title of the Paper		苞				Examination Marks			$\underset{s}{\text { Credit }}$
									U	$\stackrel{y}{n}$	$$	
III	I	TAM2103/ HIN2103 / FRE2103	Language Paper III	Lang uage	6	86	4	3	50	50	100	3
	II	ENG2103	English Paper III	$\begin{gathered} \text { Engl } \\ \text { ish } \end{gathered}$	5	71	4	3	50	50	100	3
	III	TH21C05	Analytical Geometry with Geogebra	CC	3	41	4	3	50	50	100	4
		TH21C06	Statics with GNU - FISICA lab	CC	4	56	4	3	50	50	100	5
		$\begin{aligned} & \hline \text { PS21A03/ } \\ & \text { PL21A01/ } \\ & \text { AS21A01 } \end{aligned}$	Allied - Physics / Botany / Zoology / Paper I	GE	4	56	4	3	50	50	100	4
		$\begin{aligned} & \hline \text { PS16AP1/ } \\ & \text { PL16AP1 } \\ & / \\ & \text { AS17AP1 } \end{aligned}$	Allied Physics Botany / Zoology / Practicals	GE	3	45		--	--	--	--	--
III		TH21SB01/ TH21SB02 / TH21SB03 / TH21SBCE	SBS - R Programming / Data Visualization and Tableau / Python Programming / Coursera IBM Data Science /	SEC	3	41	4	2	25	75	100	3
		NM21EVS	Environmental Studies*		-	-	-	--	$\begin{gathered} 10 \\ 0 \end{gathered}$	-	100	Grade
		NM21UHR	Universal Human values and Human Rights	AEC	2	26	4	2	$\begin{gathered} 10 \\ 0 \end{gathered}$	--	100	2
			Job Oriented Course	AEC	--			3	--	--	Grade	--
IV	I	$\begin{array}{\|l\|} \hline \text { TAM2104/ } \\ \text { HIN2104/ } \\ \text { FRE2104 } \\ \hline \end{array}$	Language Paper IV	Lang uage	5	71	4	3	50	50	100	3

II	ENG2104	English Paper - IV	Englis h	6	86	4	3	50	50	100	3
III	TH21C07	Trigonometry, Fourier Series, ZTransforms, Tensors and Maple applications	CC	3	41	4	3	50	50	100	4
	TH21C08	$\begin{aligned} & \text { Dynamics with } \\ & \text { GNU - FISICA lab } \\ & \hline \end{aligned}$	CC	4	56	4	3	50	50	100	5
	$\begin{aligned} & \hline \text { PS21A04/ } \\ & \text { PL21A02/ } \\ & \text { AS21A02 } \end{aligned}$	Allied -Physics / Botany / Zoology / Paper II	GE	4	56	4	3	30	45	75	4
	$\begin{aligned} & \text { PS21AP1/ } \\ & \text { PL21AP1/ } \\ & \text { AS21AP1 } \end{aligned}$	Allied Physics/Botany/Zool ogy Practicals	GE	3	45		3	25	25	50	2
III	TH21SB01/ TH21SB02/TH2 1SB03/ TH20SBCE	SBS - RProgramming / Data Visualization and Tableau / Python Programming / Coursera IBM Data Science	SEC	1	14	1	2	25	75	100	3
	COCOACT	NSS/NCC/YRC/EC Owatch club/YiNET/Rotract/ Sports \&Games		--			--	--	--	100	1
IV		Internship	AEC			$\begin{array}{\|c\|} \hline \text { Two } \\ \text { wee } \\ \text { ks } \\ \hline \end{array}$	100	2			
IV	NM21DTG	Design Thinking	FS	2	26	4	2	100	--	100	2
		Community Oriented Service		-	-	-	-	-	-	-	Grade

* Self Study

CC - Core Courses
GE - Generic Elective
Examination
AEC - Ability Enhancing Course
Course

CA - Continuous Assessment ESE - End Semester

SEC - Skill Enhancement

QUESTION PAPER PATTERN

CIA Question Paper Pattern: $2 \times 25=50$ Marks

One question from each unit with each question comprising of

- Two questions with a weightage of 2 marks (no choice)
- Two questions with a weightage of 6 marks (no choice)
- One question with weightage of 9 marks (Internal Choice at the same CLO level)

ESE Question Paper Pattern: $5 \times 20=100$ Marks

One question from each unit with each question comprising of

- One question with a weightage of 2 marks (no choice)
- One question with a weightage of 6 marks (Internal Choice at the same CLO level)
- One question with weightage of 12 marks (Internal Choice at the same CLO level)

CIA components for 2021-22 Batch with CIA: ESE pattern 50:50 Marks

INTERNAL COMPONENT MARKS:

Components	Marks		
CIA I	7		
CIA II	7		
MODEL	10		
ASSIGNMENT	4		
SEMINAR	5		
QUIZ	4		
CLASS PARTICIPATION	5		
APPLICATION ORIENTED/INNOVATION/CREATIVITY ASSIGNMENT	5		
ATTENDANCE	3		
TOTAL			$\mathbf{5 0}$

RUBRICS
Rubrics for 5 Marks
(Application Oriented/Innovation/Creativity Assignment)

Criteria	Marks
Originality	2
Presentation	2
References or Library Resources	1
TOTAL	

RUBRICS
Assignment/ Seminar
Maximum - 20 Marks (converted to 4 marks)

Criteria	4 Marks	3 Marks	2 Marks	Mark
Focus Purpose	Clear	Shows awareness	Shows little awareness	No awareness
Main idea	Clearly presents a main idea.	Main idea supported throughout	Vague sense	No main idea
Organisation: Overall	Well planned	Good over all organization	There is a sense of organization	No sense of organization
Content	Exceptionally well presented	Well presented	Content is sound	Not good
Style: Details and Examples	Large amounts of specific examples and detailed description	Some use of examples and detailed descriptions	Little use of specific examples and details	No use of examples

CLASS PARTICIPATION

Maximum - 20 Marks (converted to 5 marks)

Criteria	$\mathbf{5}$ Marks	$\mathbf{4}$ Marks	$\mathbf{3}$ Marks	$\mathbf{2}$ Marks	$\mathbf{1}$ Mark	Points scored
	Student proactively contributes to class by offering ideas and asks questions more than in Class clase per	Student proactively contributes to class by offering ideas and asks questions once per class	Student contributes to class and asks questions occasionally	Student rarely contributes to class by offering ideas and asking no questions	Student never contributes to class by offering ideas	
	Student listens when others talk, both in groups and in class. Student incorporates or builds off of the ideas of others.	Student listens when others talk, both in groups and in class.	Student listens when others talk in groups and in class occasionally	Student does not listen when others talk, both in groups and in class.	Student does not listen when others talk, both in groups and in class.	
Student						
Sills			often interrupts when others speak.			

	Student almost never displays disruptive behavior during class	Student rarely displays disruptive behavior during class	Student occasionally displays disruptive behavior during class	Student often displays disruptive behavior during class	Student almost always displays disruptive behavior during class	
Preparation	Student is almost always prepared for class with required class materials	Student is usually prepared for class with required class materials	Student is occasionally prepared for class with required class materials	Student is rarely prepared for class with required class materials	Student is almost never prepared for class.	

MAPPING OF PLOs WITH CLOs

| COURSE | PROGRAMME OUTCOMES | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | PLO1 | PLO2 | PLO3 | PLO4 | PLO5 | PLO6 | PLO7 |
| COURSE - TH21C01 | | | | | | | |
| CLO1 | S | M | S | S | S | S | S |
| CLO2 | S | M | S | S | S | S | S |
| CLO3 | S | M | S | S | S | S | S |
| CLO4 | S | M | S | S | S | S | S |

COURSE - TH21C02
DIFFERENTIAL EQUATIONS AND VECTOR ANALYSIS WITH SCILAB

CLO1	S	M	S	S	S	S	S
CLO2	S	M	S	S	S	S	S
CLO3	S	M	S	S	S	S	S
CLO4	S	M	S	S	S	S	S

COURSE - TH21A01
MATHEMATICAL STATISTICS - I WITH R

CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S

COURSE - TH21C03
CALCULUS OF TRANSFORMS WITH SCILAB

CLO1	S	M	S	S	S	S	S
CLO 2	S	M	S	S	S	S	S
CLO 3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S
CLO5	S	S	S	S	S	S	S

COURSE - TH21C04
NUMBER THEORY AND SUMMATION OF SERIES WITH MAPLE STATICS WITH GNU-FISICA LAB

CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S

COURSE - TH21A05
MATHEMATICAL STATISTICS - II
(Problems in Applied statistics using R)

CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S

CLO4	S	S	S	S	S	S	S
CLO5	S	S	S	S	S	S	S
COURSE - TH21C05							
ANALYTICAL GEOMETRY WITH							

GEOGEBRA

CLO1	S	M	S	S	S	S	S
CLO2	S	M	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S

COURSE - TH21C06
STATICS WITH GNU-FISICA LAB

CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S

COURSE - TH21SB01

R PROGRAMMING

CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S

COURSE - TH21C07
FOURIER SERIES, Z- TRANFORMS TENSORS AND MAPLE APPLICATIONS

CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S
COURSE - TH21C08							
DYNAMCS WITH GNU - FISICA LAB							

CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S
COURSE - TH21SB02							
PYTHON PROGRAMMING							
CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S

COURSE	COURSE NAME	Category	L	T	P	Credit
CODE	CORE I - ADVANCED					
TH21C01	Theory	71	4	-	$\mathbf{4}$	
	CALCULUS WITH SCILAB					
	SEMESTER I					

Preamble

To provide fundamentals of differentiation and integration and show their significant role in physical, economical and industrial world

Prerequisite

Knowledge of limits, Differential derivatives and related formulas

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1.	Define curvature, evolutes, envelops and asymptotes	K1
CLO2.	Explain and translate integrals of physical problems	K2
CLO3.	Demonstrate and solve physical problems using Laplace Transform	K3
CLO4.	Apply special functions like Beta and Gamma to evaluate multiple integrals	K3
CLO5.	Use computational tools like SciLab to compute complex problems	K4

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1.	S	M	S	S	S	S	S
CLO2.	S	M	S	S	S	S	S
CLO3.	S	M	S	S	S	S	S
CLO4.	S	M	S	S	S	S	S
CLO5.	S	M	S	S	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

SEMESTER I CORE I

Advanced Calculus with SCILAB

Hours: 71
Credits : 4
Subject Code : TH21C01

UNIT I

14 hrs
Total differentiation - Euler's theorem on homogeneous functions - Curvature - Radius of curvature in Cartesian and polar forms - Evolutes and envelopes - Pedal equations- linear asymptotes.

Multiple integrals- Definition- Change of order of integration in double integral - change of variables in double \& triple integrals - Applications to calculations of areas and volumes Surface areas - Areas in polar coordinates - Jacobians.

UNIT III

13 hrs

Beta and Gamma integrals - their properties \& relation between them - simple problems Applications of Gamma functions to multiple integrals.

UNIT IV

15 hrs

Laplace Transform - Introduction - Definition- working rule - Piecewise continuous function- functions of exponential order and class-sufficient condition for the existence-Linearity property -some elementary functions-first shifting theorems- unit step functions-Second shifting theorem-change of scale property-derivatives -multiplication by positive integral powers of t derivatives-Division by t theorems- Laplace transforms of integrals-Initial value and final value theorem-Periodic functions-Evaluation of integrals.

UNIT V

14 hrs
Inverse Laplace transforms - Introduction-Definition - Null function definitionUniqueness of inverse Laplace transforms-Some elementary functions-Linearity property-method of partial fractions-Heaviside expansions theorems- First translation-Second translation theoremChange of scale property-Inverse Laplace transforms of derivatives and integrals.

Text Books

S. No	Author	Title of the book	Publishers	 Edition
1.	S. Narayanan and T. K. M Pillay Unit I	Calculus Volume I	S. Viswanathan, Printers \& Publishers, PVT.,LTD	2019
2.	S. Narayanan and T. K. M Pillay Unit II \& III	Calculus Volume II	S. Viswanathan, Printers \& Publishers, PVT.,LTD	2019
3.	Dr. M.D. Raisinghania Unit IV \& V	Advanced Differential Equations	S.Chand and Company	2021
4.	Er. HemaRamachandran and Achuthsankar S Nair (For SciLab experiments)	Scilab(A free Software to Matlab)	S.Chand and Company	$1^{\text {st edition }}$ \&2015

Unit I	Chapter 8 Chapter 10 Chapter 11	Section: 1.3-1.7 Section: 2.1-2.8 Section: 1-4
Unit II	Chapter 5 Chapter	Section: 1-7
	6	Section: 1.1-2.4
Unit III	Chapter 7	Section: 2.1-6
Unit IV	Part IV:- A	

	Chapter 1	Sections - 1.1 to 1.21
Unit V	Part IV:- A Chapter 2	Sections -2.1 to 2.12

Reference Books

S. No	Author	Title of the book	Publishers	 Edition
1	Serge Lang	A First Course in Calculus	Springer Publication	2013
2	A.K. Sharma	Advanced Differential Equations	Discovery Publishing Pvt Ltd	2004
3	Shahriar	Approximately Calculus	First Indian Edition, American Mathematical Society	2012
4	N.P. Bali	Integral Calculus	Lakshmi Publication Pvt Ltd	2011
5	Johnny Heikell	Scilab for real Dummies	http://www.heikell.fi/downloads scilabpdf.pdf	

Digital Demonstration using SCILAB

http://cajael.com/eng/control/LaplaceT/LaplaceT-1_Example_2_6_OGATA_4editio.php

- Laplace Transforms with partial fraction
http://cajael.com/eng/control/LaplaceT/LaplaceT-10_Problem_B2_3_OGATA_4ed_L.php
* Laplace Transforms of some functions
http://cajael.com/eng/control/LaplaceT/LaplaceT-7_Example_2_17_OGATA_4ed_La.php
* Solving differential equation with SciLab

MOOC learning

https://nptel.ac.in/courses/111/105/111105122/
(6 Lectures by Prof. HarishankarMahato, IIT, Kharagpur)

- Lecture 10 Improper integrals
- Lecture 11 Improper integrals
- Lecture 13 Beta Gamma functions
- Lecture 14 Beta Gamma functions
- Lecture 22 Triple integrals
- Lecture 23 Triple integrals

Note

Question paper setters to confine to the above text books only.

Pedagogy

Chalk and Talk, Seminar, Group Discussion, online courses.

Course Designers

1. Dr. (Mrs.) K. Sumathi, Associate Professor, Department of Mathematics
2. Dr.(Mrs.) S. Aiswarya, Assistant Professor, Department of Mathematics

COURSE	COURSE NAME	Category	L	T	P	Credit
CODE	CORE II - DIFFERENTIAL	Theory	$\mathbf{7 1}$	$\mathbf{4}$	-	$\mathbf{4}$
TH21C02	EQUATIONS AND VECTOR					
	ANALYSIS WITH SCILAB					
	SEMESTER I					

Preamble

$>$ To learn the basics of differential equations and various techniques of solving differential equations
$>$ To expose the practical applications of differential equations and introduce students to the fundamentals of vector calculus
$>$ To show that differential equations and vector analysis are powerful tools in solving problems of physical, social and managerial sciences.

Prerequisite

$>$ Understanding of the concepts of a function and the relationship between a function and its graph
> Understanding of differential derivatives (ordinary and partial)
$>$ Knowledge of Functions and angles, Vector Algebra

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1.	Understand the fundamental concepts of differential equations and vector Analysis and their role in modern Mathematics.	K 1
CLO2.	Demonstrate the efficient use of techniques in solving differential equations and applying vector differential operators	K 2
CLO3.	Apply the problem solving techniques of differential equations and vector analysis in diverse situations of Physics, Engineering and other mathematical contexts	K 4
CLO4.	Explain the use and applications of differential equations and/or vector calculus to some topic related to undergraduate study, employment or other experience.	K 3
CLO5.	Develop the ability to apply differential equations to significant applied and/or theoretical problems.	K 4
CLO6.	Understand the various integral theorems relating line, surface and volume integrals and about industry 4.0	K 3

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1.	S	M	S	S	S	S	S
CLO2.	S	M	S	S	S	S	S
CLO3.	S	M	S	S	S	S	S
CLO4.	S	M	S	S	S	S	S
CLO4.	S	M	S	S	S	S	S
CLO5.	S	M	S	S	S	S	S
CLO6.	S	M	S	S	S	S	S

S- Strong; M-Medium; L-Low

SEMESTER II - CORE II DIFFERENTIAL EQUATIONS AND VECTOR ANALYSIS WITH SCILAB

Credits: 4

Hours: 71

Subject Code: TH21C02

UNIT I
14 hrs
Solution of Differential Equations of the first order and First Degree - Linear Equations with Constant Co-efficient - Application to Geometry and Mechanics. Solving simple problems using SciLab.

UNIT II

14 hrs

Homogeneous Linear Equations - Trajectories - Equations of the First Order but not of the First Degree. Solving simple problems using SciLab.

UNIT III

14 hrs

Linear Equations of Second Order - Simultaneous Differential Equations. Solving simple problems using SciLab.

UNIT IV

15hrs

Vector-Valued Functions, Vector Fields: An Introduction, Gradient, Divergence, Curl, and the Del Operator

UNIT V

14hrs

Line integrals, Surface integrals, Volume integrals using Integral theorems.

Text Books

S. No	Author	Title of the book	Publishers	 Edition
1	N.P. Bali	Differential Equations	Firewall Media, An imprint of Laxmi Publications Pvt, Ltd, New Delhi	$10^{\text {th }}$ Edition, 2017
2.	Susan Jane Colley Unit IV - V	Vector Calculus	Pearson Education, Inc	$4^{\text {th }}$ Edition, 2012
3.	Dr. HemaRamachandran \& Dr. Achuthsankar S.Nair	Scilab (A free Software to Matlab)	S Chand and company	$1^{\text {st }}$ Edition, 2015
4.	Lecture notes/Lab manual/Tutorials on Sci Lab			

Unit I	Chapter 2	Page No: (21-25, 40-43,48-54,70-79,86-92,105-
	Chapter 3	Page No:(170,141-148,154-162)

	Chapter 4	Page No:(269-279)
Unit II	Chapter 5 Chapter 6 Chapter 7	Page No:(286-289,297-302,308-313) Page No:(314-329) Page No:(335-339,348-351,353-354)
Unit III	Chapter 8 Chapter 9	Page No:(356-367,383-390) Page No:(400-404,416-428)
Unit IV	Chapter 3	Sections -3.3 to 3.5
Unit V	Chapter 6 Chapter 7	Sections 6.1 to 6.3 Sections - 7.1 to 7.3

Reference Books

S. No	Author	Title of the book	Publishers	 Edition
1	N.M Kapur	A text book of Differential equations	Pitambar Publishing Company Educational Publishers, New Delhi - 10005.	2008
2	M.D Raisinghania	Advanced differential equations	S.Chand \& Co New Delhi	2009
3	 Steven G.Krantz	Differential Equations Theory, Technique and Practice	Tata McGraw Hill Education Private Ltd	Tenth reprint 2011
4	Nathaniel Coburn	Vector and Tensor Analysis	The Macmillan Company, New York	2012
5	Erwin Kreyszig	Advanced Engineering Mathematics	Wiley Plus	Tenth Edition

Digital Demonstration using SciLab

https://help.scilab.org/docs/6.0.0/en_US/ode.html

* Evaluation of ordinary differential equations
https://help.scilab.org/docs/6.0.0/en_US/odeoptions.html
* Setting options for ODE solver
http://www.tf.uns.ac.rs/~omorr/radovan_omorjan_003_prII/s_examples/Scilab/Gilberto/scilab 04.pdf
* Vector operations in SciLab

MOOC learning

https://nptel.ac.in/courses/111/106/111106100/

(2 Lectures by Prof..Srinivasamanam, IIT, Madras)

- Lesson 1 Introduction to Ordinary differential equations
- Lesson 13 Second order ODE with constant co-efficient
https://nptel.ac.in/courses/111/105/111105122/
(4 Lessons by Prof Hari Shankar mahata, IIT Kharagpur)
- Lesson 36 Gradient Lesson 37 Curl and divergence
- Lesson 41 Directional derivatives Lesson 44 Applications to Mechanics

For Assignments/ Case Studies Only

Introduction to Industry 4.0 - Need - Reasons for Adopting Industry - Definition - Goals and Design Principles - Technologies of Industry 4.0- Skills required for Industry 4.0- Advancements in Industry 4.0 - Impact of Industry 4.0 on Society, Business, Government and People.

Reference

P. Kaliraj and T. Devi,	Higher Education for Industry 4.0 and Transformation to Education 5.0	Taylor and Francis group- CRS press	2021

Note

Question paper setters to confine to the above text books only.

Pedagogy

Chalk and Talk, Seminar, Group Discussion and Numerical Exercises.

Course Designers

1. Dr. K. Sumathi, Associate Professor, Department of Mathematics
2. Dr. R. Sakthikala, Assistant Professor, Department of Mathematics

COURSE	COURSE NAME	Category	L	T	P	Credit
	ALLIED -	Theory	$\mathbf{8 6}$	$\mathbf{4}$	-	5
TH21A01	MATHEMATICAL					
	STATISTICS - I WITH R					
	SEMESTER I					

Preamble

$>$ To introduce the basic statistical concepts and help the students to know the need for statistics and statistical analysis.
To describe the types of data and to discuss random variables and their distributions.

Prerequisite

Knowledge of population, sample, events and outcome.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1.	Learn the basic concepts of Set theory and Probability Distributions	K1
CLO2.	Understand and formulate questions that can be addressed with data and collect, organize, and display relevant data to answer them.	K2
CLO3.	Critically evaluate the design, including sampling techniques of a statistical study	K2
CLO4.	Effectively apply statistical software R to perform statistical computations and display numerical and graphical summaries of data sets	K3
CLO5.	Analyse, compute and interpret the coefficient of correlation and the "line of best fit" for bivariate data	K4

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1.	S	S	S	S	S	S	S
CLO2.	S	S	S	S	S	S	S
CLO3.	S	S	S	S	S	S	S
CLO4.	S	S	S	S	S	S	S
CLO5.	S	S	S	S	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

SEMESTER I - ALLIED I
 ALLIED - MATHEMATICAL STATISTICS - I WITH R

Credits : 5
Hours: 86
Subject Code : TH21A01
UNIT I 17 hrs

Probability and Distributions: Introduction - Set Theory -The Probability Set Function Conditional Probability and Independence - Random Variables - Discrete Random Variables Continuous Random Variables.

UNIT II

17 hrs

Expectation of a Random Variable - Some Special Expectations - Important Inequalities. Multivariate Distributions: Distributions of Two Random Variables-Transformations: Bivariate Random Variables - Conditional Distributions and Expectations - Independent Random Variables - The Correlation Coefficient.

UNIT III

17 hrs
Some Special Distributions: The Binomial and Related Distributions - The Poisson Distribution- The Normal Distribution - The Bivariate Normal Distribution.

UNIT IV

17 hrs
Consistency and Limiting Distributions: Convergence in Probability- Convergence in Distribution - The Central Limit Theorem- Extensions to Multivariate Distributions.

UNIT V

18 hrs
Optimal Tests of Hypotheses: Most Powerful Tests - Uniformly Most Powerful Tests Likelihood Ratio Tests - The Sequential Probability Ratio Test.

Text Book

S. No	Author	Title of the book	Publishers	 Edition
1	Robert V. Hogg, Joseph W. McKean and Allen T. Craig	Introduction to Mathematical Statistics	Pearson Education	$8^{\text {th }}$ Edition, 2019

Unit I	Chapter 1	1.1 to 1.7
Unit II	Chapter 2	$1.8-1.10,2.1-2.5$
Unit III	Chapter 3	$3.1-3.2,3.4,3.5 .1$
Unit IV	Chapter 5	$5.1-5.4$
Unit V	Chapter 8	$8.1-8.4$

Reference Books

S. No	Author	Title of the book	Publishers	 Edition
1	B.L.Agarwal	Basic Statistics	New Age International Publishers	$4^{\text {th }}$ Edition, 2006
2	A.K.Goon, M.K.Gupta, Das Gupta	Fundamentals of Statistics Vol - I	The World Press, Calcutta	$8^{\text {th }}$ Edition, 2002.
3	Murray R.Spiegel, Larry	Schaum's Outline of Theory and Problems of Statistics	Tata McGraw Hill Publishing Company Ltd, New Delhi	$3^{\text {rd }}$ Edition, 2005

Digital Demonstration using \boldsymbol{R}

http://www.r-tutor.com/elementary-statistics/numerical-measures/mean

* Finding mean
http://www.r-tutor.com/elementary-statistics/numerical-measures/median
* Finding median
http://www.r-tutor.com/elementary-statistics/probability-distributions/binomial-distribution
* Binomial distribution
http://www.r-tutor.com/elementary-statistics/probability-distributions/poisson-distribution
* Poisson distribution
http://www.r-tutor.com/elementary-statistics/hypothesis-testing
* Hypothesis testing

MOOC learning

https://nptel.ac.in/courses/111/106/111106112/
(6 Lectures by Prof.. G.Srinnivasan, IIT, Madras)

- Probability
- Rules of probability
- Conditional probability
- Binomial distribution
- Poisson distribution

Note

Question paper setters to confine to the above text books only.

Pedagogy

Chalk and Talk, Seminar, Group Discussion, Numerical Exercises and Demonstration.

Course Designers

1. Dr. K.Sumathi , Head \& Associate Professor, Department of Mathematics
2. Dr.D.Sasikala, Assistant Professor, Department of Mathematics

COURSE	COURSE NAME	Category	L	T	P	Credit
CODE	CORE III	Theory	71	4	-	4
TH21C03	CALCULUS OF					
TRANSFORMS WITH						
	SCILAB					
SEMESTER II						

Preamble

$>$ To understand the practical applications of Integral transforms in solving problems of signal processing, differential and integral equations.
> To use SCILAB effectively to solve problems involving Integral transform.

Prerequisite

> Knowledge in differential and integral calculus

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Learn and acquire knowledge of Integral Transforms	K1
CLO2	Understand the concepts of Fourier, Laplace, Hankel and Mellin Transforms and the formation of difference equations	K2
CLO3	Solve difference equations using single step and multistep numerical methods	K3
CLO4	Demonstrate competency to solve differential and integral equations using the Fourier, Laplace, Hankel and Mellin Transforms	K3
CLO5	Analyse and apply the Fourier, Laplace, Hankel and Mellin Transforms to solve problems arising in applied sciences\& Learn to use SCILAB to solve Integral equations involving Integral transforms.	K4

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1.	S	S	S	S	S	S	S
CLO2.	S	S	S	S	S	S	S
CLO3.	S	S	S	S	S	S	S
CLO4.	S	S	S	S	S	S	S
CLO5.	S	S	S	S	S	S	S

S-Strong; M-Medium; L-Low

SEMESTER II - CORE PAPER III Calculus of Transforms with SCILAB

Credits: 4

Hours: 71

Subject Code: TH21C03
UNIT I

14 Hrs

Applications of Laplace Transforms: Introduction-Solutions of Ordinary Differential Equations-Partial Differential Equations, Initial and Boundary Value Problems-Solutions of Integral Equations-Solutions of Boundary Value Problems-Evaluations of Definite Integrals - Simple Problems using SCILAB.

UNIT II

14 Hrs
Fourier Transforms and Their Applications: Introduction-The Fourier Integral FormulasDefinition of the Fourier Transform and Examples-Fourier Transforms of Generalized FunctionsBasic Properties of Fourier Transforms-Applications of Fourier Transforms to Ordinary Differential Equations-Solutions of Integral Equations-Solutions of Partial Differential Equations - Simple Problems using SCILAB.

UNIT III

14 Hrs
Hankel Transforms and Their Applications: Introduction-The Hankel Transform and Examples-Operational Properties of the Hankel Transform-Applications of Hankel Transforms to Partial Differential Equations.

UNIT IV

14 Hrs
Mellin Transforms and Their Applications: Introduction-Definition of the Mellin Transform and Examples-Basic Operational Properties of Mellin Transforms-Applications of Mellin Transforms-Application of Mellin Transforms to Summation of Series-Generalized Mellin Transforms.

UNIT V

15 Hrs
Difference Equations: Introduction-Order of Difference Equation-Degree of Difference Equation-Solution to Difference Equation-Formation of Difference Equations-Linear Difference Equations-Linear Homogeneous Difference Equations with Constant Coefficients-NonHomogeneous Linear Difference Equations with Constant Coefficients.

Text Books

S. No	Author	Title of the book	Publishers	 Edition
1.	Lokenath Debnath and Dambaru Bhatta Unit I- IV	Integral Transforms and their Applications	 Hall/CRC	$3^{\text {rd }}$ Edition, 2015
2.	Dr. V.N. Vedamurthy and Dr. N. Ch. S. N. Iyengar Unit V	Numerical Methods	Vikas Publishing House Pvt. Ltd.	2015
3	Lecture notes/Lab manual/Tutorials on SciLab			

UNIT I	Chapter 4	$4.1-4.6($ Except Page. No. 205-212,214-219, 232-234, $237-238)$
UNIT II	Chapter 2	$2.1-2.5$ and 2.10-2.12 (Except Page. No. 91-98)

UNIT III	Chapter 7	$7.1-7.4$
UNIT IV	Chapter 8	$8.1-8.4$ and $8.6,8.7$
UNIT V	Chapter 10	10.1 to 10.8

Reference Books

S. No	Author	Title of the book	Publishers	 Edition
1	B.S. Grewal	Higher Engineering Mathematics	Khanna Publishers, New Delhi.	$39^{\text {th }}$ Edition, 2007
2	Veerarajan. T	Engineering Mathematics	Tata McGraw Hill, New Delhi.	$3^{\text {rd }}$ Edition, 2004
3	Kreyszig. E	Advanced Engineering Mathematics	John wiley and sons, (Asia) Pvt. Ltd., Singapore.	2006
4	J. K. Goyal and K.P. Gupta	Integral Transform	PragatiPrakashanEducational publishers, Meerut	2015
5	M.K.Venkataraman	Numerical Methods Engineering	National Publishing Company	1990

Digital Demonstration using SciLab

https://help.scilab.org/docs/6.0.0/en_US/intg.htm

* Evaluation of definite integrals
https://help.scilab.org/docs/5.5.2/en_US/fft.html
* Fast Fourier transforms
https://www.bragitoff.com/2016/03/fourier-series-and-scilab/
* Fourier series and scilab
https://www.bragitoff.com/2016/03/calculating-fourier-series-and-plotting-it-scilab/
\star Fourier series and plotting
https://www.bragitoff.com/2016/03/polynomial-fitting-scilab/
* polynomial fitting using scilab

MOOC learning

https://nptel.ac.in/courses/111/102/111102129/
(6 Lectures by Prof..Sarthoksircar IIT, Delhi)

- Introduction to Fourier transforms Part I
- Introduction to Fourier transforms Part II
- Applications of Fourier transforms Part I
- Introduction to Laplace Transforms Part I
- Introduction to Laplace Transforms Part II
- Applications of Laplace Transforms Part I

Note
Question paper setters to confine to the above text books only.

Pedagogy

Chalk and Talk, Seminar, Group Discussion and Numerical Exercises.

Course Designers

1. Dr. (Mrs.) K. Sumathi, Associate Professor, Department of Mathematics
2. Dr.(Mrs) G. Arthi, Assistant Professor, Department of Mathematics
$\begin{array}{|c|c|l|l|l|l|c|}\hline \text { COURSE } & \text { COURSE NAME } & \text { Category } & \text { L } & \text { T } & \text { P } & \text { Credit } \\$\cline { 4 - 7 } CODE \& CORE IV\end{array}$)$

Preamble

$>$ To orient the students to learn about the real and complex number systems and also some of the basic notation of set theory.
$>$ To enable the students to learn about the convergence and divergence of the series and develop problem solving skills.

Prerequisite

> Knowledge in basic properties of the real numbers that lead to the formal development of real analysis and various methods in terms of convergence and divergences.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1.	Know the concept of convergence and limits that are applicable to sequences, series, differentiation and integration	K1
CLO2.	Determine the convergence or divergence of sequences and series	K2
CLO3.	Analyse the precise proofs of results that arise in the context of real analysis	K2
CLO4.	Apply convergence tests to infinite series	K2
CLO5.	Solve the problems related to convergence / divergence.	K3
CLO6.	Analyse how abstract ideas and rigorous methods in real analysis can be applied to practical problems	K4

S- Strong; M-Medium; L-Low

Syllabus

SEMESTER II - CORE IV

 NUMBER THEORY AND SUMMATION OF SERIES WITH MAPLECredits : 4
Hours: 71

Subject Code: TH21C04

UNIT I

14 hrs
The Real and Complex number systems: Introduction - The field axioms - The order axioms - Geometric representation of real numbers - intervals - integers- the unique factorization theorem for integers - rational numbers- irrational numbers - upper bounds, maximum element, least upper bound - the completeness axiom - some properties of supremum - properties of the integers deduced from completeness axiom - the Archimedean property of the real number system - rational number with finite decimal representation - Finite decimal approximation to real numbers -infinite decimal representation of real numbers - Absolute values and the triangular inequality - The Cauchy - Schwarz inequality - Plus and minus infinity and the extended real number system \mathbf{R}^{*} -

Complex numbers - Geometric representation of complex number - The imaginary unit - Absolute value of a complex number - Impossibility of ordering the complex numbers - Complex exponentials - Further properties of complex exponentials - The argument of a complex number Integral powers and roots of complex numbers - complex logarithms - complex powers - Complex sines and cosines - Infinity and the extended complex plane \mathbf{C}^{*}

UNIT II

14 hrs

Some Basic Notations of Set theory: Introduction - Notations - Ordered pairs - Cartesian product of two sets - Relations and functions - Further terminology concerning functions - One - to - one functions and inverses - Composite functions - Sequences - Similar sets - Finite and infinite sets - Countable and uncountable sets - Uncountability of the real number system - set algebra Countable collections of countable sets
UNIT III

15 hrs

Convergence and divergence of series: Definition of Infinite Series - Elementary results Series of positive terms - Comparison tests - Cauchy's condensation test - D'Alembert's ratio test Cauchy's root test - Raabe's test - Absolute convergence.
UNIT IV
16 hrs
Theory of Equations: Remainder Theorem - Roots of an Equation - Relations connecting the Roots and Coefficients - Symmetric function of roots - Transformations of equations - Reciprocal equations - Removal of terms - Transformations in General - Descarte's rule of signs.

UNIT V

12 hrs
Rolle's Theorem - Multiple roots - Strum's theorem (statement only) -Strum's functions Horner's method.

Text Book

S. No	Author	Title of the book	Publishers	Year \& Edition
1	Tom. M. Apostol Unit I \& II	Mathematica l Analysis	Narosa Publishing House	2002
2	T.K. Manicavachagom Pillay, T. Natarajan \& K.S. Ganapathy Unit III - V	Algebra Vol I	 Publishers, PVT., LTD	2017

UNIT I	Chapter 1	Sections $1.1-1.33$
UNIT II	Chapter 2	Sections 2.1-2.15
UNIT III	Chapter 2	Sections 8 - 19, 21-24
UNIT IV	Chapter 6	Sections 1 to 12,15 to $19,21 \& 24$ UNIT V Chapter6

Reference Books

S. No	Author	Title of the book	Publishers	 Edition
1.	R.R.Goldberg	Methods of Real Analysis	Oxford University Press	2018
2	Walter Rudin	Principles of	Tata McGraw Hill	2013

		Mathematical Analysis	Publications	
3.	P.N. Chatterjee	Algebra	Rajhans Agencies, Meerut	2010
4.	S.Barnard \&J.M.Child	Higher Algebra	Enlarged Edition, A.I.T.B.S Publishers \& Distributors	2004
5.	Hall \& Knights, R Knight	Higher Algebra	Arihant Prakashan, Meerut	2008

Digital Demonstration using maple

https://www.maplesoft.com/applications/view.aspx?sid=3981\&view=html

* Convergence of series
* Radius of convergence
* Cauchy‘s root test
* Ratio test
* Integral test
https://www.maplesoft.com/support/help/Maple/view.aspx?path=convert/base
* Conversion of numbers with various bases

MOOC learning

https://www.academia.edu/5241092/VISUALIZING_THE_BEHAVIOR_OF_INFINITE
SERIES_AND_COMPLEX_POWER_SERIES_WITH_THE_GEOGEBRA
https://nptel.ac.in/courses/111/101/111101134/
(6 Lectures by Prof I.K. Rana, IIT Bombay)

- Real Numbers and sequences Part I
- Real Numbers and sequences Part II
- Real Numbers and sequences Part III
- Convergence of sequences Part I
- Convergence of sequences Part II
- Convergence of sequences Part III

Note

Question paper setters to confine to the above text books only.

Pedagogy

Chalk and Talk, Seminar, Group Discussion, online courses.

Course Designers

1.Dr. (Mrs.) K. Sumathi, Associate Professor, Department of Mathematics
2. Dr.(Mrs) S.Aiswarya, Assistant Professor, Department of Mathematics

COURSE	COURSE NAME	Category	L	T	P	Credit
CODE						
TH21A05	MATHEMATICAL STATISTICS (Problems in Applied statistics using R)	Theory	$\mathbf{8 6}$	$\mathbf{4}$	-	$\mathbf{5}$
	(PI					

Preamble

$>$ To introduce statistical techniques of analysis and inference that are useful in many areas of scientific research.
$>$ To present descriptive statistics and utilize the probability distributions to perform statistical inference.

Prerequisite

> Critically evaluate the design, including sampling techniques, of a statistical study,
$>$ Effectively use statistical software R to perform statistical computations and display numerical and graphical summaries of data sets

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Construct and interpret deviations and proportions for populations,	K2
CLO2	Explain and successfully apply all aspects of parametric testing techniques including single and multi-sample tests for mean and proportion	K2
CLO3	Explain and successfully apply all aspects of appropriate non- parametric tests.	K2
CLO4	Understand, apply and compute maximum likelihood estimation	K3
CLO5	Take up a career in statistical analysis	K4

Mapping with Programme Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S
CLO5	S	S	S	S	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

SEMESTER II - ALLIED - II

ALLIED - MATHEMATICAL STATISTICS - II

(Problems in Applied statistics using R)

Credits : 5

Subject Code : TH21A05

UNIT I

17 hrs
Linear Regression - Introduction - Simple Linear Regression Model - ProblemsEstimating the Regression Parameters-Error Random Variable- Prediction Intervals for Future Responses -problems- Coefficient of Determination- Sample Correlation Coefficient.

UNIT II

17 hrs
Testing Statistical Hypotheses - Introduction - Hypothesis Tests and Significance LevelsProblems - Tests Concerning the Mean of a Normal Population-Case of Known VarianceProblems - One-Sided Tests - The t Test for the Mean of a Normal Population-Case of Unknown Variance -- Hypothesis Tests Concerning Population Proportions- Two-Sided Tests of \boldsymbol{p}. Hypothesis Tests Concerning Two Populations: Introduction- Testing Equality of Means of Two Normal- Populations: Case of Known Variances-Problems.

UNIT III

17 hrs

Testing Equality of Means: Unknown Variances and Large Sample Sizes-Problems Testing Equality of Means: Small-Sample Tests when the Unknown Population Variances Are Equal- Paired-Sample t Test-Testing Equality of Population Proportions -Problems.Analysis of Variance - Introduction - One-Factor Analysis of Variance- Remark on the Degrees of Freedom -Two-Factor Analysis of Variance: Introduction and Parameter Estimation- Two-Factor Analysis of Variance: Testing Hypotheses.

UNIT IV

18 hrs
Chi-Square Goodness-of-Fit Tests- Introduction -- Chi-Squared Goodness-of-Fit Tests Testing for Independence in Populations Classified According to Two Characteristics. Quality Control - Introduction - The \boldsymbol{X} Control Chart for Detecting a Shift in the Mean -Problems - When the Mean and Variance Are Unknown- SControl Charts - Problems - Control Charts for Fraction Defective.

UNIT V

17 hrs
Vital Statistics-Definition-Utility of vital statistics-Measures of population and Vital statistics-Introduction-Measures of population - Measures of vital statistics - Mortality Rates Fertility Rates.
Text Books

S. No	Author	Title of the book	Publishers	Year \& Edition
1.	Sheldon M Ross	Introductory Statistics Unit - I to IV	Elsevier	$3^{\text {rd }}$ Edition, 2010
2.	Veer Bala Rastogi	Biostatistics Unit - V	Medtech	$3^{\text {rd }}$ Edition, 2015
	UNIT I Chapter 12 Sections: 12.1-12.3,12.7,12.8, 12.9 UNIT II Chapter 9 Chapter 10 Sections: 9.1-9.5 Sections: 10.1-10.2 UNIT III Chapter 10 Chapter 11 Sections: 10.3-10.6 Sections: 11.1-11.5 UNIT IV Chapter 13Sections: 13.1-13.4, 15.1-15.3Chapter 20 Chapter 21	Sections: 20.2., 20.2.1., 20.2.2 Sections: 21.1-21.5		

Reference Books

S. No	Author	Title of the book	Publishers	Year \& Edition
1.	Fundamentals of Mathematical Statistics	S.C.Gupta and V.K.Kapur	 sons, New Delhi.	$11^{\text {th }}$ Edition, 2014
2.	E.L.Lehmann Joseph P.Romano	Testing Statistical Hypotheses	Springer Private Ltd,	$3^{\text {rd }}$ Edition, 2009
3.	Murray R.Spiegel Larry J.Stephens	Theory and problems of Statistics	Tata McGraw Hill Publishing Company Ltd	$3^{\text {rd }}$ Edition, 2008

Digital Demonstration with R and MOOC learning

https://nptel.ac.in/courses/111/104/111104120/ (6 lessons by Prof. Shalalb, IIT Kanpur)

- Lesson 03 Calculation of Data vectors
- Lesson 04 Built in commands and Data Handling
- Lesson 10 Bar Diagram
- Lesson 11 Subdivided Bar diagram and Pie diagram
- Lesson 21 Co-efficient of variation and Boxplot
- Lesson 30 Rank correlation

Note

Question paper setters to confine to the above text books only.

Pedagogy

Chalk and Talk, Seminar, Group Discussion and Numerical Exercises.

Course Designers

1. Dr.(Mrs). C.R.Parvathy, Associate Professor, Department of Mathematics
2. Mrs. S.Lakshmi, Assistant Professor, Department of Mathematics

COURSE	COURSE NAME - CORE V ANALYTICALGEOMETRY CODE	Category	L	T	P	Credit
TH21C05						

Preamble

$>$ To provide a comprehensive and clear description of geometrical objects
$>$ To introduce equations for various shapes used in physics and engineering.

Prerequisite

Knowledge in Basic vector algebra, trigonometric functions and identities

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Recall and classify geometric shapes using correct mathematical language. Draw and label figures based on verbal descriptions.	K1
CLO2	Understanding various equations of Planes, Straight Line, Sphere, Cone, andCylinder.	K2
CLO3	Applying theorems involving vertical angles, Complementary angles, supplementary angles, transversals, internal angle measure in triangles, circles and tangent lines to circles and applying geometric concepts to solve problems.	K3
CLO4	Analyse transform from polar co-ordinate system to rectangular co- ordinatesystem and vice versa.	K4

Mapping with Programme Learning Outcomes

CLOs/POs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1	S	M	S	S	S	S	S
CLO2	S	M	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO 4	S	S	S	S	S	S	S

S-Strong;M-Medium;L-Low

Syllabus

SEMESTER III- CORE PAPER ANALYTICAL GEOMETRY WITH GEOGEBRA

Credits: 4

Hours: 41

UNIT I
8 hrs
Polar Coordinates: Introduction - Definition of Polar Coordinates - Relation between Cartesian Coordinates and Polar Coordinates - Polar Equation of a Straight Line - Polar Equation of a Straight Line in Normal form - Circle - Polar equation of a Conic - Simple Problems using Geogebra

UNIT II

8 hrs
Planes: Introduction - General Equation of a plane - General Equation of a plane passing through a given point - Equation of a plane in Intercept form - Equation of a plane in Normal form Angle between two planes - Perpendicular distance from a point on a plane - Plane passing through three given points - To find the Ratio in which the plane joining the points ($\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}$) and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ is Divided by the Plane $a X+b y+c z+d=0$ - Plane Passing through the intersection of two given planes Equation of the planes which bisect the angle between two given planes - Condition for the Homogenous Equation of the Second Degree to Represent a pair of Planes- Illustrative examples Simple Problems using Geogebra

UNIT III

8 hrs

Straight Line: Introduction - Equation of a Straight Line in Symmetrical Form - Equation of a Straight Line Passing Through the Two Given Points - Equation of a Straight Line Determined by a pair of planes in Symmetrical Form - Angle between a Plane and a Line - Condition for a line to be parallel to a Plane - Condition for a line to lie on the plane - To find the Length of the Perpendicular from a Given Point on a Line - Coplanar Lines - Skew Lines - Equation of Two Non-intersecting Lines - Intersection of Three Planes - Conditions for Three Given Planes to form a Triangular Prism - Illustrative Examples - Simple Problems using Geogebra

UNIT IV

8 hrs

Sphere: Definition of Sphere - The Equation of a Sphere with centre at (a, b, c) and radius \mathbf{r} - Equation of a sphere on the Line Joining the points ($\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}$) as Diameter - Length of the Tangent from $P\left(x_{1}, y_{1}, z_{1}\right)$ the Sphere $x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0$ - Equation of the Tangent Plane at $\left(x_{1}, y_{1}, z_{1}\right)$ to the Sphere $x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0-$ Section of a Sphere by a Plane - Equation of a Circle - Intersection of Two Spheres - Equation of a Sphere Passing through a Given Circle Condition for Orthogonality of Two Spheres - Radical Plane - Coaxal System - Illustrative Examples - Simple Problems using Geogebra.

UNIT V

9 hrs
Cone: Definition of Cone - Equation of a Cone with a given Vertex and a given guiding curve - Equation of a cone with its vertex at the origin - Condition for the General Equation of the Second Degree to Represent a Cone - Right Circular Cone - Tangent Plane - Reciprocal Cone.

Cylinder: Definition - Equation of a Cylinder with a Given Generator and a given guiding curve - Enveloping Cylinder - Right Circular Cylinder - Illustrative - Simple Problems using Geogebra.

Text Books

1.	P.R.VITAL	Analytical Geometry 2d and 3d (All Five Units)	Pearson Publication
2.	Department of Mathematics	Lab Manual on GEOGEBRA	
3.	Geogebra Manual -The Official Manual of Geogebera Research.shu.ac.uk/geogebra/GIF-Guides/officialGeogebramanual.pdf(2011)		

Unit I: Chapter9
Unit II: Chapter 12
Unit III: Chapter 13
UnitIV:Chapter 14
UnitV:Chapter15 \& 16

Reference Books

1	V.V.Koney	Linear Algebra, Vector Algebra and Analytical Geometry	TPUPress,2009
2	P.Duraipandian, Laxmi D.Muhilan	Analytical Geometry -Three Dimensional	Emerald Publishers, 2010
3	D.Chatterjee	Analytical Geometry- Two and Three Dimensions	Narosa Publishing House,2011
4	George.F.Simmons	Calculus with Analytical Geometry	Second Edition
5	Shanti Narayan	Analytical Solid Geometry	 Company Ltd, 2009

MOOClearning

Tangent,Normal:https://nptel.ac.in/courses/111/104/111104095/

E-Content

1) Relation between Cartesian Coordinates and Polar Coordinates :https://www.youtube.com/watch?v=Oh2DefOhcA\&ab
2) Equation of a plane in Normal
form:https://www.youtube.com/watch?v=2sZKZHyaQJ8\&abhttps://www.youtube.co $\underline{\mathrm{m} / \text { watch? } v=A E Z q 5 u L h b I U \& a b}$
3) Equation of a Straight Line in Symmetrical
4) The Equation of a Sphere with centre at (a, b, c) and radius r:https://www.youtube.com/watch?v=WhYX0T_UqBQ\&ab
5) Equation of a Cone with a given Vertex and a given guiding curve:https://www.youtube.com/watch?v=XQi6ul9-nJo\&ab

Pedagogy:

ChalkandTalk,Seminar,GroupDiscussion,NumericalExercises,Quiz.

CourseDesigners:

1. Mrs.M.MohanaPriya,AssistantProfessor,DepartmentofMathematics(UG-SF)
2. Mrs.S.Narmatha,AssistantProfessor,DepartmentofMathematics(UG-SF)

$\begin{gathered} \hline \text { COURSE } \\ \text { CODE } \\ \text { TH21C06 } \end{gathered}$	COURSE NAME - CORE VI STATICS WITH GNU- FISICA LAB	Category	L	T	P	Credit
		Theory	56	4	-	5

Preamble

$>$ To promote conceptual understanding and problem solving skills, the course contains many interactive elements.

Prerequisite

$>$ Knowledge in forces acting at a point, rigid body, vector algebra and centre of gravity.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Recall the basic principles and concepts of statics to develop real concepts	K1
CLO2	Understand the relation between constraints imposed by supportive forces and develop the ability to describe position, forces and moments. Select suitable reference coordinate axes, construct free body diagrams.	K2
CLO3	Apply knowledge of mathematics, physical sciences and an ability to recognize, formulate and solve engineering problems.	K3
CLO4	Analyse the properties (components, resultants and moments) of a force and force systems in 2D \& 3D. Solve the properties (centroid, centre of gravity and moment of inertia) of areas, lines and volumes and apply these properties in equilibrium problems. Gain ability to apply the results from physical models to create real target systems	K4

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S

S- Strong;M-Medium;L- Low

Syllabus

SEMESTER III - CORE PAPER VI
 STATICS with GNU -FISICA Lab

Credits: 5
 Subject Code:TH21C06
 UNIT I

Hours: 56

11 Hrs
Forces acting at a point: Resultant and components - Parallelogram of forces -Triangleof forces - Polygon of forces - Lami's Theorem - An extended form of the parallelogram law of forces - Resolution of a force - Components of a force along two given directions Theorem on Resolved parts - Resultant of any number of forces and coplanar forces acting ata point : Graphical and Analytical method - Condition of Equilibrium of any number of forces acting upon a particle - Simple Problems using GNU - fisicaLab.

UNIT II
 11Hrs

Parallel Forces and Moments: Introduction - The resultant of two like, unlike and unequal parallel forces acting on a rigid body - Moment of a force - Physical significance and Geometrical representation of a moment - Varigon's theorem of moments Generalised theorem of moments. Couples: Definition - Equilibrium and Equivalence of two couples - couples in parallel planes - Representation of a couple by a vector Resultant of a Couple and a Force - Simple Problems using GNU - fisicaLab.

UNIT III

11 Hrs

Equilibrium of Three Forces Acting on a Rigid body: Rigid body subjected to any three forces - Three coplanar forces - Procedure to be followed in solving any statistical problem - Two Trigonometrical theorems. Coplanar forces: Introduction - Reduction of any number of coplanar forces - Condition and Alternative condition for a system of forces to reduce to asingle force or to a couple - Change of the base point - Equation to the line of action of the resultant - Simple Problems using GNU-fisicaLab.

UNIT IV

11 Hrs
Friction: Introduction - Statical, Dynamical and limiting friction - coefficient of friction - Angle of friction - Cone of friction - Equilibrium of a particle on a rough inclined plane - Equilibrium of a body on a rough inclined plane under a force parallel to the plane - Equilibrium of a body on a rough inclined plane under any forces. Centre of gravity: Centre of Like Parallel Forces - Centre of mass or centre of Inertia - Distinction between centre of gravity and centre of mass - The centre of gravity of a body Determination of uniqueness ofthe centre of gravity in simple cases - Centre of gravity by integration - Simple Problems usingGNU - fisicaLab.

UNIT V

12 Hrs
Stability of equilibrium: Stable, Unstable and Neutral equilibrium - Nature of equilibrium of a rigid body supported at one fixed point - conditions of stability for a body with one degree of freedom. Equilibrium of strings: Equation of the common catenary Tension at any point - Geometrical properties of the common catenary - Simple Problems usingGNU - fisicaLab.

Text Books

S. No	Author	Title of the book	Publishers
1.	Dr.M.K.Venkataraman	A Text Book of Statics	Agasthiar Publications (Eleventh edition)(2014)
2	$\underline{\text { https://www.gnu.org/software/fisicalab/manual/en/fisicalab.pdf }}$		

Reference Books

S. No	Author	Titleofthe book	Publishers
1.	K.Viswanatha Naik \& M.S.Kasi	Statics	EmeraldPublishers,1992
2.	N.P.Bali	Statics	Golden Mathematics Series, Laxmipublications,1992

UNITI : Chapter2:Sections 1to 16

UNITII : Chapter3:Sections 1to 13, Chapter4: Sections1 to 10
UNITIII : Chapter5: Sections 1 to 5, Chapter6: Sections1 to9
UNITIV : Chapter7:Sections 1 to 12, Chapter8:Sections 1to 6\&18
UNITV : Chapter10:Sections 1to 3, Chapter11: Sections1 to6

MOOCCourses

> https://nptel.ac.in/courses/122/102/122102004/\#

(6 LecturesbyProf.R.K.Mittal,IITDelhi)

- Lecture1Preliminaryconcepts
- Lecture2VectorAnalysis
- Lecture3Analysis offorces
- Lecture4AnalysisofEquilibrium
- Lecture13MomentsandproductofInertia
- Lecture16StabilityofEquilibrium

E-Content

1. Resolutionofaforce
i)https://www.youtube.com/watch?v=Nc8ZthC65xs
ii)https://www.youtube.com/watch?v=2-R0erl1cVw
2. Equilibriumof anynumberof forcesactinguponaparticle-
i) https://www.youtube.com/watch?v=fWK3JZfpR-Y
3. Momentofaforce
i)https://www.youtube.com/watch?v=iy5CeQa7JWw

ii)https://www.khanacademy.org/science/physics/torque-angular-momentum/torquetutorial/v/moments

4. ResultantofaCoupleand aForce -
i) https://www.youtube.com/watch?v=oueKQ5-dJQc
ii) https://www.rpi.edu/dept/core-eng/WWW/IEA/f15/lectures/Lecture11.pdf
5. Varigon'stheoremofmoments=
i)https://www.youtube.com/watch?v=JJX3-af_JQw
6. Coplanarforces
i)https://www.youtube.com/watch?v=UlKGy-SPmrU
ii)https://www.youtube.com/watch?v=S_iG8VlaIXE
7. Angleoffriction
i)https://www.youtube.com/watch?v=SK0FNS9seqA
ii)https://www.youtube.com/watch?v=qyS54OwpiI4
8. Centreofgravity
i)https://www.youtube.com/watch?v=-OTix-fhEUE
9. Equilibriumof strings-
i) https://www.youtube.com/watch?v=A4Db16NcHiI
ii) https://www.youtube.com/watch?v=-IIUiE5WY3o

Pedagogy:

Chalk and talk, seminar, group discussion, numerical exercises and quiz.

CourseDesigners:

1. Dr.K.Sumathi, Associate Professor,Department of Mathematics
2. Dr.R.Sakthikala, Assistant Professor, Department of Mathematics

		CATEGORY	L	T	P	CREDIT
COURSE CODE TH21SB01	COURSE NAME - R Programming Semester III	Theory	28	4	13	3
Preamble						
To extract valuable information for use in strategic decision making						
Course Outcomes						

Upon the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Identify the basics of R	K1
CLO2	Explain the use of data to find the statistical measures	K2
CLO3	Apply various concepts to write programs in R.	K3
CLO4	Analyze data and generate reports based on the data.	K4

Mapping with Programme Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

Semester III
 R Programming

Credits: 3
Hours: 41
Subject code: TH21SB01

OBJECTIVE

To enhance career opportunities for the students by promoting skills in R programming relevant to big data analytics

UNIT I

9 hrs (6 L+3 P)
Exploring R Basics- Introduction- Getting started-R Studio-R basic data types-R operators- R objects Vectors-list, arrays-Matrix- factors-Data frame- R file formats- Importing and Exporting files - Simple programs related to the following topics

* Creating Vectors, Matrices, Factors
* Import Data, copy data from Excel to R
* Working with variables and Data in R

UNIT II

7 hrs (5L+2P)
Data Visualization in R- Exploratory data Analytics- Lattice package- Data sets- different types of diagrams in Statistics - Simple programs related to the following topics

* Bar charts and pie charts in R, Histograms in R, plotting of graphs

UNIT III

7 hrs ($5 \mathrm{~L}+\mathbf{2 P}$)
Statistical Measures - Introduction - Understanding data distribution - Use cases- Central Tendency Measure - Simple programs related to the following topics

* Summary statistics in R: Mean, Median, Mode
* Frequencies

UNIT IV

9 hrs ($6 \mathrm{~L}+3 \mathrm{P}$)
Measures of Variability - Standard deviation - Probability distributions. - Simple programs related to the following topics

* Standard Deviation, Range, Quartile Deviation
* t-Test
* ANOVA
* Chi-Square

UNIT V

$9 \mathrm{hrs}(6 \mathrm{~L}+3 \mathrm{P})$
Regression Analysis - Data types of regression - Linear regression- Inferential AnalysisResiduals and coefficients- plot Diagnostics- Multi linear regression using ANOVA.- Simple programs related to the following topics

* Correlation
* Regression

Text Book

S.No	Author	Title of the book	Publishers
1	V.Bhuvaneswari	Data Analytics with R Step by Step	Lean
		$\begin{array}{l}\text { Unit I: Chapter 3,Pg no.21-45 } \\ \text { Unit II: Chapter 4 Pg no.49-67 } \\ \\ \end{array}$	$\begin{array}{l}\text { Unit III: Chapter 5 Page No. 83-96 } \\ \text { Unit IV: Chapter 5 Page No. 97-106 } \\ \text { Unit V: Chapter 6 Page No. 107-115 }\end{array}$
Publishers,2016			

Reference Books

Book Name	Author	Publisher	Year \& Edition
The Art of R Programming	Norman Matloff	No Starch Press	2011
The R Book	Michael J. Crawle	Wiley	2008
Statistical Analysis with R.	M. John	Tata McGraw Hill Publishing Co. Ltd	October 2010
Learning R	Richard Cotton	O'Reilly Media	September 2013

Digital learning

1. R basic data types -
i) Learn about the R Data Types $\mid \mathrm{R}$ Tutorial \#3 - Bing video
ii) Data Science With R Tutorial | Lesson 4 - R Data Structures | Simplilearn - Bing video
2.Lattice package
i) Lattice Graphs in R - Bing video
2. Introduction
i) Introduction to R Studio; Basic Summary Statistics - Bing video
3. Probability distributions
i) Introduction to R: Probability Distributions - Bing video
ii) Using and exploring probability distributions using R - Bing video
4. Data types of regression
i) Linear Regression in $\mathrm{R} \mid$ Linear Regression in R With Example | Data Science

Algorithms | Simplilearn - Bing video
ii)How To Do Simple Linear Regression In R - Full R Tutorial! - Bing video

Course Designers:

1. Dr. K.Sumathi, Associate Professor, Department of Mathematics.
2. Dr. C.R.Parvathy, Assistant Professor, Department of Mathematics

$\begin{gathered} \text { COURSE } \\ \text { CODE } \\ \text { TH21A12 } \end{gathered}$	COURSENAME- ALLIED MATHEMATICS FOR PHYSICS I	Category	L	T	P	Credit
		Theory Allied	101	4	-	5

Preamble

$>$ To introduce the fundamentals concepts of vector calculus, matrices, Laplace transforms and tensors which acts as a tool for understanding basic theories in theoretical physics

Prerequisite

Knowledge in basic concepts of calculus and matrices
Course Learning Outcomes
On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Recall the knowledge of calculus, vectors, vector calculus and these basic mathematical structures which are essential in solving problems in various branches of Physics as well as in engineering.	K1
CLO2	Understanding mathematical tools like calculus, integration, series solution approach, special function and prepare the student to solve problems which model physical phenomena.	K2
CLO3	Apply problem-solving skills that are required to solve different types of Physics related problems with well-defined solutions. and	K3
CLO4	Analyze and tackle open-ended problems that belong to the disciplinary area boundaries using mathematical equation risen out of it.	K4

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	S	S	S	S
CLO2	S	S	S	S	S	S
CLO3	S	S	S	S	S	S
CLO4	S	S	S	S	S	S
CLO5	S	S	S	S	S	S

S- Strong;M- Medium; L-Low

SEMESTERIII- ALLIED

 MATHEMATICSFOR PHYSICS-I

 MATHEMATICSFOR PHYSICS-I}

Credits: 5
Hours: 101
Subject Code: TH21A12

UNIT I

20 hrs
Vector Calculus:Scalar and vector point functions - Differentiation of vectors -Differential vector Operators - Directional derivative: Gradient, Divergence and curl-MAPLE Applications Stepwise Solutions of Vector Calculus.

UNIT II

20 Hrs
Integration for vectors: Line, Surface and Volume integrals - Theorems of Gauss, Green's and Stoke's (Statement only)-Verification of Simple problems-MAPLE Applications-Stoke's problem.

UNIT III

20 Hrs
Laplace Transforms: Definition-Laplace Transform of $\mathrm{e}^{\text {at }}$, cosat, sinat, coshat, sinhat, $\mathrm{t}^{\mathrm{n}}, \mathrm{n}$ a positive integer - L $\left[f^{\prime}(t)\right], \mathrm{L}\left[f^{\prime \prime}(t)\right], \ldots ., \mathrm{L}\left[\mathrm{f}^{\mathrm{n}}(\mathrm{t})\right]$ - Laplace transform of $\mathrm{e}^{\text {at }} \operatorname{cosbt}, \mathrm{e}^{\text {at }} \sin$ and $\mathrm{e}^{\mathrm{at}} \mathrm{t}^{\mathrm{n}}$. Inverse Laplace transforms of standard functions. Solving differential equations of second order with constant coefficients using Laplace transform.

UNIT IV

20 Hrs

Matrices: Eigen values and Eigen vectors-Cayley Hamilton theorem(without proof) VerificationUsing this theorem finding the inverse of a matrix-Partition of matrices - Diagonalisation of matrices - Power of matrices.

UNITV

21 Hrs

Tensor Analysis: Definition of Tensors - Contravariant- Covariant and mixed tensors -Addition and subtraction of Tensors-Summation convention-Symmetry and Axisymmmetric Tensor Contraction and direct product - Quotient Rule - MAPLE Application - Tensor Calculus with differential Geometry.

Text Books

S. No	Author	Title of the book	Publishers
1	 K.Thilagavathy	Allied Mathematics Volume II (For Unit I\&II)	S.Chand \& company LTD - First edition(2004)
2	T.K.Manicavachagam Pillai and S. Narayanan	Ancillary Mathematics(For Unit III\&IV) Volume-I \& Volume-II	S.Viswanathan (Printers and Publishers) Pvt. Ltd.
Vol. I -2009 \& Vol.II-2008			

3	A.W.Joshi	Matrices and Tensors in Physics(For unit V)	New Age International Publishers, Revised Edition,(2010)		
4	$\underline{\text { http://www.maplesoft.com/applications/ }}$				
Reference Books					
S. No	Author	Title of the book	Publishers		
1	P.Durai Pandian and Kayalal Pachaiyappa	Vector Analysis	SChand Publications(2014)		
2	Shanthinarayan and P.K.Mital	Vector Calculus	S Chand publications(2016)		
3	P.C.Mathews	Vector Calculus	Springer Verlang London Ltd.(1998)		
4	B.D.Gupta	Mathematical Physics	Vikas Publications(1993)		
UnitI\& II					: Chapters 1 to3
Unit III	:Chapter7(Volume II)				
Unit IV	:Chapter3 (Volume I)6.2, 14.0to17				
UnitV	:Part II,Chapters15,16,17				

E-Content

1. Gradient, Divergence and curl i)https://www.youtube.com/watch?v=TYOYID9gJxM
ii) https://www.youtube.com/watch? $\mathrm{v}=\mathrm{v} 3 \mathrm{ZC} 4 \mathrm{Mo1fS} 0$
2. Stoke's Problem-
i) https://www.youtube.com/watch?v=3NyLlzM_ImE
ii) https://www.youtube.com/watch?v=fWZCIUUrkuA
3. Inverse Laplace transforms of standard functions-
i) https://www.youtube.com/watch?v=Y8GXpS31CGI
4. Diagonalisation of matrices-Power of matrices-
i) https://www.youtube.com/watch?v=eEo7K8jPS9Y
ii) https://www.youtube.com/watch?v=LTb9V84hG9w
5. Tensor Calculus with differential Geometry
i) https://www.youtube.com/watch?v=noimyj5QTis

Pedagogy:

Chalk and Talk, Seminar, Group Discussion, Numerical Exercises and Demonstration

Course Designers:

1. Dr.K.Sumathi, Associate Professor and Head, Department of Mathematics
2. Ms.A.Karpagam, Associate Professor, Department of Mathematics

$\begin{gathered} \text { COURSE } \\ \text { CODE } \\ \text { TH21A09 } \end{gathered}$	COURSE NAME	Category	L	T	P	Credit
		Theory	101	4	-	5

$>$ To inspire the students to use appropriate and relevant, fundamental and applied mathematical knowledge.
> To explore how Chemistry and Mathematics interact with other disciplines with industryand with wider society.

Prerequisite

Knowledge in Calculus and Set theory.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Recall the important quantities associated with vector fields such as divergence, curl and scalar potential and concepts in matrices, set theory and equivalence relations	K1
CLO2	Understanding the various concepts of line integrals and Laplace transformof one variable through problems.	K2
CLO3	Applying fundamental theorem of line integrals, Green's theorem, Stoke'stheorem and Divergence theorem to evaluate integrals	K3
CLO4	Demonstrate knowledge of basic concepts such as Abelian groups, normal subgroups, quotient groups, cyclic groups, permutation groups and group actions	K4

Mapping with Programme Outcomes

CLOs/PLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	S	M	S	S
CLO 2	S	M	S	S	S	S
CLO 3	S	S	S	M	S	S
CLO 4	S	S	M	S	S	S

S-Strong; M - Medium; L-Low

SEMESTER III

ALLIED-MATHEMATICS FOR SCIENCES I

Credits: 5

Hours:101
Subject Code: TH21A09
UNIT I
20Hrs
Vector Calculus: Scalar and Vector point functions - Differentiation of vectors Differential Operators - Directional derivative: Gradient - Divergence and curl - MAPLE Applications-Stepwise Solutions of Vector Calculus.

UNIT II

20Hrs
Integration for vectors Line, surface and volume integrals-Theorems of Gauss, Green's and Stoke's(statements only) Verification of MAPLE Applications - Stoke's problem.

UNITIII

20Hrs
Laplace Transforms: Definition-Laplace Transform of $\mathrm{e}^{\text {at }}$, cosat, sinat, coshat, sinhat, $\mathrm{t}^{\mathrm{n}}, \mathrm{n}$ a positive integer - L $\left[f^{\prime}(t)\right], \mathrm{L}\left[f^{\prime \prime}(t)\right], \ldots . ., \mathrm{L}\left[\mathrm{f}^{\mathrm{n}}(\mathrm{t})\right]$ - Laplace transform of $\mathrm{e}^{\text {at }} \operatorname{cosbt}, \mathrm{e}^{\text {at }} \sin$ at and $\mathrm{e}^{\text {at }} \mathrm{t}^{\mathrm{n}}$. Inverse Laplace transforms of standard functions. Solving differential equations of second order with constant coefficients using Laplace transform.

UNITIV

20Hrs
Matrices: Eigen values and eigen vectors- Cayley Hamilton theorem (without proof) Verification-Finding the inverse of a matrix (Using Cayley Hamilton theorem).

UNITV

21 Hrs
Review of Set theory and equivalence relations - Group - Properties - Order of an element - Subgroups - Cyclic groups - Theorems - Permutation group - Symmetric group S_{n}. TextBooks

S. No	Author	Title of the book	Publishers
1	 K.Thilagavathy	Allied Mathematics Volume II (For Unit I\&II)	S.Chand \& company LTD-First edition(2004)
2	T.K.Manicavachagam Pillai and S. Narayanan	Ancillary Mathematics (For Volume II	S.Viswanathan (Printers and Publishers) Pvt. Ltd.
3	 K. Thilagavathy	Mathematics Volume II(For Unit V)	S Chand \& Company LTD-First edition(2004)
4	http://www.maplesoft.com/applications/		

Reference Books

S. No	Author	Title of the book	Publishers
1	P.Durai Pandian and Kayalal Pachaiyappa	Vector Analysis	S Chand Publications(2014)

2	Shanthinarayan and P.K.Mital	Vector Calculus	S Chand publications(2016)
3	P.C.Mathews	Vector Calculus	Springer Verlang London Ltd.(1998)
4	G.Balaji	Transforms and Partial differential equations	G. Balaji publishers, Revised edition(2011)

E-Content

1) Scalar and Vector pointfunctions:
https://www.youtube.com/watch?v=uanWfSQ6cq8\&ab
2) Line, surface and volumeintegrals: https://www.youtube.com/watch?v=NyG0vRn5FfU\&ab
3) Inverse Laplace Transforms of standard functions:
https://www.youtube.com/watch?v=Y8GXpS31CGI\&ab
4) Eigen values and eigen vectors:
https://www.youtube.com/watch?v=PFDu90VAE-g\&ab
5) Review of Set theory and equivalence relations:
https://www.youtube.com/watch?v=IZzEiuY-c2M\&ab

Note

Question paper setters to confine to the above text books only.

Pedagogy

Chalk and Talk, Seminar, Group Discussion, Demonstration and Numerical Exercises.

Course Designers

1. Dr.K.Sumathi, Associate Professor and Head, Department of Mathematics
2. Dr.R.Lakshmi, Assistant Professor, Department of Mathematics

COURSE	COURS ENAME-ALLIED	CATEGORY	L	T	P	CREDIT
CODE	MATHEMATICS FOR					
TH21A07	COMMERCE	Theory	$\mathbf{8 6}$	$\mathbf{4}$	-	$\mathbf{5}$
	SEMESTER I/III					

Preamble

- To present the basic concepts of Mathematics to the students.
- To enable the students to find the practical applications to the real-world problems.

Course Learning Outcomes

Upon the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Recall about several diverse examples of mathematics not in secondary school mathematics, problems using mathematics in unfamiliar settings, and explain why mathematical thinking is valuable in daily life based on the series and Mathematics of Finance.	K1
CLO2	Understand Engage in analysing, solving, and computing real-world applications on the limits of Algebraic functions and simple differentiation	K2
CLO3	Apply the abilities to describe the concepts of simple integration and its application in business. Solve problems in a range of mathematical applications using the integral.	K3
CLO4	Analyse Linear Programming models for service and manufacturing systems, and apply operations research techniques and algorithms to solve these LP problems and transportation problems	K4

Mapping with Programme Learning Outcomes

CLOs/PLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	S	M	S	M
CLO2	M	S	M	S	S
CLO3	M	S	S	M	S
CLO4	S	M	M	S	S
CLO5	M	S	M	S	M

S-Strong; M-Medium; L-Low

Syllabus

SEMESTERI / III ALLIED-MATHEMATICSFORCOMMERCE (COMMON TO SEMESTER I -B.COM (CA,E-COM,FS,A\&F)\& SEMESTERIII B.COM(Aided \& SF))

Credits: 5

Subject Code: TH21A07
Unit I
17 Hrs
Arithmetic Progression - Geometric Progression. Simple Interest- Compound Interest - Annuities.

Unit II

17 Hrs
Differentiation: Introduction - Limits - Limits of a function - properties of limits - Standard limit theorems - Continuity - Properties of Continuous functions Differentiation - Derivatives of x^{n} - Derivatives of e^{x} - Derivatives of $\log \mathrm{e}^{\mathrm{x}}$ - product rule - quotient rule - Function of a function rule - Logarithmic Differentiation Differentiation of Implicit function - Relation between dy/dx and dx/dy - Parametric Differentiation - Successive Differentiation - Applications of Derivatives - Marginal cost - Marginal revenue - Elasticity Relation between marginal revenue and elasticity of demand -. Maxima and minima - Point of inflexion (Excluding Trigonometric functions).
Unit III
17Hrs
Integration : Arbitrary constant - Two general rules - Some standard results Integration by Substitution - I - Integration by substitution - II - Integration by substitution - III - Standard results - Integration of rational function of the type Integration by Partial fractions - Integration of the function of the type $1 /\left((\mathrm{ax}+\mathrm{b}) \mathrm{sqrt}\left(\mathrm{lx}^{2}+\mathrm{mx}+\mathrm{n}\right)\right)$ - Integration by parts - Definite integral - properties of definite integrals - An Application of integration - Marginal cost - Total cost and average cost - Marginal revenue, Total revenue and Average revenue (Excluding Trigonometric functions).

Unit IV

17 Hrs

Linear Programming: Meaning and Formulation of LPP - Graphical Method Simplex Method Transportation problem: Mathematical formulation of the problem Initial Basic feasible solution (Matrix Minima Method - North - West Corner rule and VAM)- Simple problems only.

Unit V

18 Hrs
Assignment Problem: Introduction- Mathematical formulation of assignment problem- Assignment algorithm- unbalanced Assignment model- maximization case in assignment problems-Travelling Salesman Problem-Simple problems only.
Text books

S.No	Author	Title of the book	Publishers	Year of Publication
1.	P.R.Vittal	Business Mathematics and Statistics	Margham Publications	2002

	UNIT I: Chapter $-6,7,8,9 \& 10$ UNIT- II: Chapter-15(Excluding Trigonometric functions) UNIT -III: Chapter -16 (Excluding Trigonometric functions)			
2.	V. Sunderesan, K.S. GanapathySubramania and K.Ganesan	Operations Research	A.R. Publications, 3 edition	2005
	UNIT IV: Chapter 2 Section: 2.1 -2.8, Chapter - 3 : Section: 3.1.1-3.1.4, Chapter 5 - Section :5.1 UNIT V: Chapter 6 section 6.1,6.2,6.3,6.4,6.5,6.6, 6.7, 6.9			

Reference books

S. No	Author	Title of the book	Publishers	Year of Publication
1.	P.A. Navnitham	Business Mathematics and Statistics	Jai Publishers, Trichy.	2003
2.	P. Rama Murthy	Operations research	New age international Publishers	2007
3.	Manmohan and Gupta P K	Operations Research	Sultan Chand \& Sons	2011

MOOC Learning

https://nptel.ac.in/courses/111/107/111107128/

(4 Lectures by Prof.Kusum Deep, Department of Mathematics, Indian
Institution ofTechnology Roorkee)
Lecture 03 Graphical method
Lecture 05 Simplex method
Lecture 28 Transportation Problem
Lecture 29 Assignment Problem

Note

Question paper setters to confine to the above textbooks only

Pedagogy

Lecture by Chalk and talk, Power point presentation, E-content, Group discussion, Assignment,Quiz, Peer learning, Seminar

Course Designers

1. Dr. R. Sakthikala, Assistant Professor, Department of Mathematics
2. Ms. M. Mohanapriya, Assistant Professor, Department of Mathematics

E-Content

1. Simple Interest, Compound Interest https://www.youtube.com/watch?v=B3IdfBcXrLA
2. Derivatives of function of a function and Logarithmic Differentiation https://www.youtube.com/watch?v=Dp9sgIvaKPk\&ab https://www.youtube.com/watch?v=uGy681i2oRM\&ab
3. Integration by Partial fractions
https://www.youtube.com/watch?v=6rXByMcuAyI\&ab
4. Initial Basic feasible solution
https://www.youtube.com/watch?v=ItOuvM2KmD4
5. Mathematical formulation of assignment problem
https://www.youtube.com/watch?v=OX1ssZez sY\&ab

	COURSE NAME -					
COURSE	CORE VII TRIGONOMETRY,	Category	L	T	P	Credit
CODE	FOURIER SERIES, Z -					
TH21C07	TRANFORMS TENSORS AND					
	MAPLE APPLICATIONS	Theory	$\mathbf{4 1}$	$\mathbf{4}$	-	$\mathbf{4}$
	SEMESTER IV					

Preamble

> To use Trigonometry concepts to solve applied problems
$>$ To introduce students to the fundamentals of vector calculus and tensor analysis

Prerequisite

Knowledge of Functions and angles, Vector Algebra
Course Learning Outcomes
On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1.	Find solutions of a Trigonometric equation	K1
CLO2.	Work with the Trigonometric form of complex numbers and Calculate vector scalar and vector products	K2
CLO3.	To understand the applications of Z transforms	K3
CLO4.	To understand the importance of tensors	K4

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

SEMESTER IV - CORE PAPER VII

TRIGONOMETRY, FOURIER SERIES, Z- TRANFORMS ,TENSORS AND MAPLE APPLICATIONS

Credits: 4

Hours: 41
UNIT I
8 Hrs
Solutions of simple trigonometric functions - Expansion of $\operatorname{cosn} \theta, \operatorname{sinn} \theta, \cos ^{n} \theta, \sin ^{n} \theta-$ Hyperbolic functions - Separation of real and imaginary parts of $\operatorname{Sin}(\alpha+i \beta)$, $\operatorname{Cos}(\alpha+i \beta)$, Tan $(\alpha+i \beta)$, Sin $h(\alpha+i \beta), \operatorname{Cosh}(\alpha+i \beta)$, Tan h $(\alpha+i \beta), \operatorname{Tan}^{-1}(\alpha+i \beta)-$ MAPLE Application for branches and branch cuts of inverse trigonometric and hyperbolic functions.

UNIT II

8 Hrs
Logarithm of a complex number - Summation of trigonometric series - Simple problems.

UNIT III

Fourier series - Definition, finding fourier coefficient for a given periodic function with period 2π, odd and even functions- half range series Change of interval.

UNIT IV

8 Hrs
Z- Transforms: Linear Property - First Shifting Theorem - Differentiation in ZDomain - Dumping Rule- Second Shifting theorem-Z- Transform of Unit impulse Functioninitial value theorem- final value theorem- Inverse Z - Transform - Partial Fraction MethodMethods of Residues - Power Series Method.

UNIT V

9 Hrs

Tensor Analysis - Definition of Tensors - Contravariant - Covariant and mixed tensors - Addition and subtraction of Tensors - Summation convention - Symmetry and Axisymmmetry Tensor - Contraction and direct product - Quotient law - MAPLE Application - Tensor Calculus with differential Geometry.

Text Books

1	T.K.ManicavachagomPillay and S. Narayanan	Trigonometry (For Unit I,II)	S. Viswanathan (Printers and Publishers) Pvt. Ltd. (2010)
2	T.K.ManicavachagomPillay and S. Narayanan	Fourier Series- (For Unit III)	S.Viswanathan (Printers and Publishers) Pvt. Ltd. (2010)
3	Dr.A.Singaravelu	Transforms and Partial Differential Equations (For Unit IV)	Meenakshi Agency Chennai, (2014)
4	A.W.Joshi	Matrices and Tensors in Physics (Unit V)	New Age International Publishers, Edition,(2010)
5	http://www.maplesoft.com/applications/		

Reference Books

1	Nathaniel Coburn	Vector and Tensor Analysis	The Macmillan Company, New York,
2	Shaheer Khan	Tensor Analysis and Its Applications	Partridge India, 2015
3	http://www.intmath.com/		

UNIT I : Chapter 3-Sections1, 4, 5, 6, 9, 10.
UNIT II : Chapter 4-Sections 1,2,3,5,6,7,9. Chapter 5 -Sections 1, 2, 3 .
UNIT III :Chapter 6- Sections -1 to 6
UNIT IV : Chapter 5 - Sections 5.1-5.84
UNIT V \quad : Part II - Chapter - 15, 16, 17

MOOC learning

https://nptel.ac.in/courses/111/105/111105134/

- Fourier Series-Evaluation
- Convergence of Fourier Series -I
- Convergence of Fourier Series -II
- Fourier Series for Even and Odd Functions
- Half Range Fourier Expansions
- Differentiation and Integration of Fourier Series
https://nptel.ac.in/courses/111/102/111102129/
- Introduction to Z-transform - Part 1
- Introduction to Z-transform - Part 2
- Introduction to Z-transform - Part 3

E-Content

Separation of real and imaginary parts of $\operatorname{Cos}(\alpha+i \beta)$, Tan $(\alpha+i \beta)$
https://youtu.be/VZtb4DFxBgA
https://youtu.be/UxClYnal2KA
Logarithm of a complex number
https://youtu.be/ve7CmEIEv_U
Finding fourier coefficient for a given periodic function with period 2π, evenfnctions
https://youtu.be/eDoWQEU213A
Differentiation in Z- Domain
https://youtu.be/4q5b5ZzgQcc
Addition and subtraction of Tensors
https://youtu.be/ZaSfJs2fgUQ

Pedagogy

Chalk and Talk, Seminar, Group Discussion and Numerical Exercises.

Course Designers:

1. Ms. A. Karpagam, Associate Professor, Department of Mathematics
2. Dr.C.R.Parvathy, Associate Professor and Head, Department of Mathematics

COURSE	COURSE NAME - CORE VIII	Category	L	T	P	Credit
CODE TH21C08	DYNAMICS WITH GNU - FISICA	Theory	56	$\mathbf{4}$	-	$\mathbf{5}$
	LAB					

Preamble

$>$ To develop an understanding of the principles of dynamics and the ability to analyze problems in a systematic and logical manner, including the ability to draw free-body diagrams
$>$ To teach the students basic mathematical and computational tools for modeling and analysis of dynamic systems.

Prerequisite

$>$ Knowledge in forces and Vector Algebra.
Course Learning Outcomes

CLO Number	CLO Statement	Knowledge Level
CLO1.	Know basic kinematic concepts and dynamic concepts	K1
CLO2.	Understand and work with practical problems in dynamics	K2
CLO3.	Study the kinematics and kinetics of particles and rigid bodies using force and acceleration, work and energy, and impulse and momentum principles	K3
CLO4.	Solving dynamics problems and determine which concepts to apply, and choose an appropriate solution strategy.	K4

On the successful completion of the course, students will be able to
Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S

Syllabus

> SEMESTER IV - CORE PAPER VIII DYNAMICS WITH GNU-FISICA LAB

Credits: 5
Hours: 56

UNIT I

11 Hrs

Kinematics: Composition of velocities - Parallelogram law - Components of a velocity along two given directions - Resultant of several simultaneous coplanar velocities of a particle

- Relative velocity - Angular velocity- Angular velocity of a particle moving along a circle with uniform speed - Acceleration - Composition of accelerations - Relative acceleration Motion in a straight line under uniform acceleration - Space described in any particular second - Motion in a straight line with variable acceleration - The equations of motion of a particle under constant acceleration: graphical method - Acceleration of falling bodies - Motion of a particle down a smooth inclined plane. Laws of motion: Introduction - Newton's laws of motion - Composition of forces - Gravitational units of forces. Work function of a varying
force- Tension in an elastic string - Power - Energy - Kinetic energy - Potential energy Principle of conservation of energy. (simple problems only) - Simple Problems using GNU fisicaLab.

UNIT II

11 Hrs

Projectiles:Introduction - Two fundamental principles - The path of a projectile is a parabola - Characteristics of a motion of a projectile - Moment of inertia: Theorem of parallel axes - Theorem of perpendicular axes - Moments of interia in some particular cases. M.I of a thin uniform rod, rectangular laminar - Uniform rectangular parallelopiped of edges 2a, 2b, 2c - Simple Problems using GNU - fisicaLab.

UNIT III

11 Hrs
Motion under the action of Central forces : Introduction - Velocity and acceleration in polar coordinates -Equations of motion in polar coordinates - Note on the equiangular spiral - Motion under a central force - Differential Equations of central orbit - Pedal equation Velocities in a central orbit - Apses and apsidal distances - Law of inverse square, inverse cube (simple problems only)- Simple Problems using GNU-fisicaLab.

UNIT IV

11 Hrs

Simple Harmonic motion : Introduction - S.H.M in a straight line - General solution Geometrical representation of a S.H.M - Change of origin - Composition of two S.H.M of the same period and in the same straight line - Composition of two S.H.M of the same period in two perpendicular directions - Units and Dimensions - Simple Problems using GNUfisicaLab.

UNIT V

12 Hrs

Impulsive forces: Impulse - Impulsive force - Impact of two bodies - Loss of kinetic energy in impact - Motion of a shot and gun - Impact of water on a surface. Collision of Elastic Bodies: Introduction - Fundamental laws of impact - Impact of a smooth sphere on a fixed smooth plane - Direct impact of two smooth spheres - Loss of kinetic energy due to direct impact of two smooth spheres - Oblique impact of two smooth spheres - Loss of kinetic energy due to oblique impact of two smooth spheres (simple problems only)- Simple Problems using GNU - fisicaLab.

Text Books

1	Dr.M.K.Venkataraman	A Text Book of Dynamics	Agasthiar (2014)	Publications-
2	https://www.gnu.org/software/fisicalab/manual/en/fisicalab.pdf			

Reference Books

1.	K.ViswanathaNaik\&M.S.Kasi	Dynamics	Emerald Publishers, 1992
2.	N.P. Bali	Dynamics	(Golden Mathematics series), Laxmi Publications, New edition 2011
3.	M L Khanna	Dynamics	Jai PrakashNath company, 15 ${ }^{\text {th }}$ edition,1998

UNIT I : \quad Chapter 3: Sections 3.1 to $3.12 \& 3.17$ to $3.29,3.32$
Chapter 4:Sections 4.1 to $4.9 \& 4.24$ to 4.35
UNIT II: \quad Chapter 6: Sections 6.1 to 6.11
Chapter 12: Sections 12.1 to 12.4
UNIT III : Chapter 11: Sections 11.1 to 11.15

UNIT IV : Chapter 10: Sections 10.1 to 10.7
Chapter 14: Sections 14.1 to 14.5
UNIT V: Chapter 7: Sections 7.1 to 7.6
Chapter 8: Sections 8.1 to 8.8

MOOC learning

- https://nptel.ac.in/courses/112/106/112106180/
- https://ocw.mit.edu/courses/mechanical-engineering/2-003sc-engineering-dynamics-fall-2011/
- http://cecs.wright.edu/~sthomas/dynamicslectureslides.html

E Content

Relative velocity
https://youtu.be/08au89dJxfw
Angular velocity
https://youtu.be/JXEkU0aOMOY
Newton's laws of motion
https://youtu.be/tjlKrVuFES8
Composition of forces
https://youtu.be/i12_Y7HS4k
Characteristics of a motion of a projectile
https://youtu.be/r2xbfyeJHBw
Velocity and acceleration in polar coordinates
https://youtu.be/MINmlY yoZ0
Geometrical representation of a S.H.M
https://youtu.be/hNOriCE-ws
Oblique impact of two smooth spheres
https://youtu.be/XCCNWUhbbzE

Pedagogy

Chalk and Talk, Seminar, Group Discussion, Numerical Exercises, Quiz and Case Study.

Course Designers:

1. Dr. K.Sumathi, Associate Professor, Department of Mathematics

2 .Dr. G. Arthi, Assistant Professor, Department of Mathematics

	COURSE NAME	Category	L	T	P	Credit
COURSE CODE TH21SB02	PYTHON PROGRAMMING	Theory	$\mathbf{4 1}$	$\mathbf{4}$	-	$\mathbf{3}$
	SEMESTER IV					

Preamble

- To extract valuable information for use in strategic decision making

Course Learning Outcomes

Upon the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Identify the basics of Python	K1
CLO2	Explain why Python is a useful scripting language for developers.	K2
CLO3	Apply various concepts to write programs in Python.	K3
CLO4	Analyze data and generate reports based on the data.	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

Semester IV
 PYTHON PROGRAMMING

Credits: 3
Hours: 41
Subject code: TH21 SB 02
OBJECTIVE
To enhance career opportunities for the students by promoting skills in Python programming relevant to data analytics, machine learning, data visualization and natural language processing.

UNIT I

The way of the program: the python programming language- what is a program? - What is debugging? - formal and natural languages-the first program. Variables, expressions and statements: values and types- variables - variables names and keywords- statementsevaluating expressions-operators and operands-order of operations-operations on strings-composition-comments.

> * Program to Print Hello world!

UNIT II

7 hrs (5L+2P)
Functions: Function calls-Type conversion-Type coercion-Math functions- compositionadding new functions-definitions and use-flow of execution-parameters and argumentsvariables and parameters are local-stack diagrams-functions with results. Conditional and recursion: the modulus operator-boolean expressions-logical operators-conditional execution-alternative execution-chained conditionals-nested conditionals-the return statement- recursion-stack diagrams for recursive functions-infinite recursion-keyboard input.

* Program to Calculate the Area of a Triangle
 * Program to Solve Quadratic Equation
 * Program to Swap Two Variables

UNIT III

7 hrs (5 L +2P)
Fruitful functions: return values-program development-composition-boolean functionsmore recursion-leap of faith-one more example-checking types. Iteration: multiple assignment-the while statement-tables-two-dimensional tables-encapsulation and generalization-more encapsulation-local variables-more generalization-functions. Strings: a compound data type-length-traversal-and the for loop-string slices-string comparison-strings are immutable- a find function looping and counting- the string module-character classification.
$* \quad$ Program to Generate a Random Number
$\star \quad$ Program to Convert Kilometres to Miles

UNIT IV

9 hrs ($6 \mathrm{~L}+3 \mathrm{P}$)
Lists: list values-accessing elements -list length-list membership-lists and for loops-list operations-list slices-lists are mutable-list deletion-objects and values-aliasing-cloning listslist parameters-nested lists-matrices-strings and lists. Tuples: mutability and tuples-tuple assignment-tuples as return values-random numbers-list of random numbers- counting many buckets-a single - pass solution. Dictionaries: dictionary operations-dictionary methodsaliasing and copying-sparse matrices-hints-long integers-counting letters.

```
* Program to Convert Celsius To Fahrenheit
* Program to Check if a Number is Positive, Negative or 0
* Program to Check if a Number is Odd or Even
* Program to Check Leap Year
```


UNIT V

9 hrs ($6 \mathrm{~L}+3 \mathrm{P}$)
File and exceptions: text files-writing variables-directories-pickling-exceptions. Classes and objects: user- defined compound types- attributes- instances as arguments-sameness-rectangles-instances as return values-objects are mutable-copying. Classes and functions: time- pure functions- modifiers- which is better? - Prototype development versus planning- generalization- algorithms.

* Program to Find the Largest Among Three Numbers
* Program to Check Prime Number
* Program to Find the Factorial of a Number

S.No	Author	Title of the book	Publishers
1	Allen Downey Jeffrey Elkner Chris Meyers	How to think like a computer scientist Learning with Python https://greenteapress.com/thinkpython/thinkC Spy/thinkCSpy.pdf Unit I Chapter 1-1.1-1.5 (Pg no.1-8) Chapter 2-2.1-2.10 (Pg no.11-19) Unit II Chapter 3-3.1-3.12 (Pg no.23-33) Chapter 4-4.1-4.12 (Pg no.37-46) Unit III Chapter 5-5.1-5.8 (Pg no. 49-58) Chapter 6-6.1-6.9 (Pg no.61-72) Chapter 7-7.1-7.7 (Pg no. 73-80) Unit IV Chapter 8-8.1-8.16 (Pg no.83-96) Chapter 9-9.1-9.8 (Pg no. 97-104) Chapter 10-10.1-10.7 (Pg no.107-113) Unit V Chapter 11-11.1-11.5 (Pg no.117-124) Chapter 12-12.1-12.8 (Pg no.129-135) Chapter 13-13.1-13.7 (Pg no.139-144)	Dream tech press, Green tea press 2016
2.	Programs	https://www.programiz.com/pythonprogramming/examples	

Reference Books

Book Name	Author	Publisher	 Edition
Learning to Program with Python	Richard L. Haltman	Richard Publishing	-
Getting started with Python Data Analysis	Phuong Vo. T.H., Martin Czygan	Packt Publishing	2015

Digital learning

1) Variables, expressions and statements
https://www.youtube.com/watch?v=tvwo09N9QTQ
2) Math functions https://www.youtube.com/watch?v=OviXsGf4qmY
3) Boolean functions https://www.youtube.com/watch?v=r526yum0EYQ
4) Dictionary methods https://www.youtube.com/watch?v=daefaLgNkw0\&t=6s
5) Prototype development versus planning $\underline{\text { https: } / / w w w . y o u t u b e . c o m / w a t c h ? ~} \mathrm{v}=6 \mathrm{qaN6i}$ 7LZI\&t=1s

Course Designers:

1. Dr. K.Sumathi, Associate Professor, Department of Mathematics.
2. Dr. R. Sakthikala, Assistant Professor, Department of Mathematics.

COURSE	COURSE NAME	Category	L	T	P	Credit
CODE TH21A31	ALLIED MATHEMATICS FOR	Theory	$\mathbf{1 0 1}$	$\mathbf{4}$	-	$\mathbf{5}$

Preamble

$>$ To develop general skills in differentiation, integration and algebraic manipulation
$>$ To introduce variety of differential equations and their solutions with emphasis on applied problems in Engineering and Physics
> To describe basic ideas of Fourier series

Prerequisite

Knowledge of Differential Calculus, Integral Calculus and Vector Calculus.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1.	Use multiple integration to find areas and volumes of simple geometrical objects	K1
CLO2.	Develop the ability to apply differential equations to significant applied or theoretical problems.	K1
CLO3.	Solve problems in ordinary differential equations, dynamical systems	K2
CLO4.	Demonstrate their understanding of how physical phenomena are modeled by differential equations and dynamical systems	K2
CLO5.	Compute the Fourier series representation of a periodic function, in both exponential and sine-cosine forms	K3

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1.	S	S	S	S	S
CLO2.	S	S	S	S	S
CLO3.	S	S	S	S	S
CLO4.	S	S	S	S	S
CLO5.	S	S	S	S	S

S- Strong; M - Medium; L- Low

Syllabus

SEMESTER IV - ALLIED MATHEMATICS FOR PHYSICS - II

Credits: 5

Hours: 101
UNIT I
20 Hrs
Integration - Multiple integrals - Evaluation of double integrals - Changing the order of integration - Double integrals in polar Coordinates - Cylindrical co-ordinates (problems related cylindrical coordinates) - Application of double integrals in evaluating area between curves.

UNIT II

20 Hrs

Integration: Evaluation of triple integrals - Jacobian of two and three variables- Beta and Gamma functions - Relation-Evaluation of double and triple integrals using Beta and Gamma Functions - Bessel's function (Simple problems)

UNIT III

20 Hrs

Differential equation of the form $\left(a D^{2}+b D+C\right) y=e^{a x} \varphi(x)$ where a, b, c are constants,
$\varphi(x)=\sin m x$ or $\cos m x$ or $x^{m}-$ Solution of homogeneous linear differential equations of the form $\left(a x^{2} D^{2}+b x D+c\right) y=X$ where X is a function of $x-$ Equation reducible to homogeneous equation.

UNIT IV

20 Hrs

Formation of partial differential equations by eliminating arbitrary constants and arbitrary functions - Solutions of standard types of first order equations. $f(p, q)=0, f(x, p, q)=0$, $f(y, p, q)=0, f(z, p, q)=0, f_{1}(x, p)=f_{2}(y, q), z=p x+q y+f(p, q)-$ Equations reducible to the standard forms - Lagrange method of solving linear partial differential equation $P p+Q q=R-$ Charpit's method (simple problems only).

UNIT V

21 Hrs
Fourier series:Definition - Finding Fourier Coefficients for a given periodic function with period 2π - Odd and Even functions -Half range series - Change of Intervals Applications.
Text Book

1	S. Narayanan and T.K.M Pillay	Calculus Volume II \&III	S. Viswanathan (Printers and Publishers) Pvt. Ltd. - Reprint Volume III (2014), Volume II (2015)

Reference Books

| 1 | Dr. M.D. Raisinghania | Ordinary and Partial
 differential Equations | S Chand and Company Ltd., Revised
 Edition (2013) |
| :--- | :--- | :--- | :--- | :--- |
| 2 | Richard C. Diprima
 William E.Boyce | Elementary Differential
 equations and Boundary
 value problems | Wiley India private Ltd., 9
 (2013) |
| 3 | A.K.Sharma Edition | | |

UNIT I \&II : \quad Chapter $5 \quad$ Sections -2.1 to $4.0,5.1$ to $5.4 \& 6.0$ to 6.3
Chapter 6 Sections-1.1 to 2.4
Chapter $7 \quad$ Sections-2.1 to $2.3,3,4,5,6$
UNIT III : Chapter 2 Sections - 1.0 to $4,8.0$ to8.3
UNIT IV : Chapter $4 \quad$ Sections 1.0 to 7.0
UNIT V : Chapter 6 Sections 1.0 to 6.0

Pedagogy

Chalk and Talk, Seminar, Group Discussion, Numerical Exercises and Demonstration.

Course Designers:

1. Dr.K.Sumathi, Associate Professor, Department of Mathematics
2. Dr.D.Sasikala, Assistant Professor, Department of Mathematics

COURSE	COURSE NAME	Category	L	T	P	Credit
CODE TH21A14	ALLIED - MATHEMATICS	Theory	$\mathbf{1 0 1}$	$\mathbf{4}$	-	$\mathbf{5}$
	FOR SCIENCES II					

Preamble

> To acquaint the students with the tools in Mathematics to problem solving in as many areas as possible.
> To acquire both a conceptual and operational understanding of differential and integral calculus in one and several variables

Prerequisite

> Knowledge in Differential and Integral Equations

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1.	Know basic concepts relating integration, differentiation and Fourier series	K1
CLO2.	Understand several techniques of differentiation and integration of real valued functions	K2
CLO3.	Learn methods of formation and solving differential equations of dimensions one and higher	K2
CLO4.	Impart the application of periodic functions through Fourier series	K3

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	S	S	S	S
CLO2	S	S	S	S	S	S
CLO3	S	S	S	S	S	S
CLO4	S	S	S	S	S	S

S- Strong; M - Medium; L-Low

Syllabus

SEMESTER IV - ALLIED MATHEMATICS FOR SCIENCES II

Credits: 5

Hours: 101
UNIT I
20 Hrs
Integration - Integration by parts - Multiple integrals - Evaluation of the double integral - Changing the order of integration -Double integral in polar co-ordinates.

UNIT II

20 Hrs
Integration: Application of double integrals in evaluating area between curves Evaluation of triple integrals - Jacobian of two and three variables - Beta and Gamma functions - Relation - Evaluation of double and triple integrals using Beta and Gamma Functions.

UNIT III

20 Hrs

Differential equation of the form $\left(a D^{2}+b D+C\right) y=e^{a x} \varphi(x)$, where a, b, c are constants, $\varphi(\mathrm{x})=\sin \mathrm{mx}$ or $\cos \mathrm{mx}$ or x^{m}-Solution of homogeneous linear differential equations of the form $\left(a x^{2} D^{2}+b x D+c\right) y=X$, where X is a function of $x-E q u a t i o n s$ reducible to the linear
homogenous equation.

UNIT IV

20 Hrs
Formation of partial differential equations by eliminating arbitrary constants and arbitrary functions - Solutions of standard types of first order equations: $f(p, q)=0, f(x, p, q)=0$, $\mathrm{f}(\mathrm{y}, \mathrm{p}, \mathrm{q})=0, \mathrm{f}(\mathrm{z}, \mathrm{p}, \mathrm{q})=0, \mathrm{f}_{1}(\mathrm{x}, \mathrm{p})=\mathrm{f}_{2}(\mathrm{y}, \mathrm{q}), \mathrm{z}=\mathrm{px}+\mathrm{qy}+\mathrm{f}(\mathrm{p}, \mathrm{q})$ - Lagrange method of solving linear partial differential equation $P_{p}+Q_{q}=R-$ Charpit's Method - Simple problems.

UNIT V

21 Hrs

Fourier series: Definition - Finding Fourier coefficients for a given periodic function with period 2π. Odd and Even functions - Half range series - Change of intervals.

Text Book

| 1. | S. Narayanan and
 T.K.ManicavachagomPillay |
 III | S.Viswanathan (Printers and
 Publishers)
 (2000). |
| :--- | :--- | :--- | :--- | :--- |

Reference Books

1	Dr. M. D. Raisinghania	Ordinary and Partial differential Equations	S Chand and Company Ltd., Revised Edition (2013)
2	Richard C. Diprima William E.Boyce	Elementary Differential equations and Boundary value problems	Wiley India private Ltd., 9 Edition (2013)
3	A. K. Sharma	Multiple Integrals	Discovery Publishing House, First Edition (2005)

UNIT I \& II : Vol II Chapter 1 - Section - 12.0.
Chapter 5 -Sections - 2.1 to 4.0 , 5.1 to $5.4 \& 6.1$ to 6.3 .
Chapter 6 -Sections - 1.1 to 2.4.
Chapter 7 -Sections - 2.1 to 2.3,3,4,5,6.
UNIT III : Vol III Chapter 2 -Sections -1.0 to $4,8.0$ to 8.3, 9.0.
UNIT IV : \quad Chapter 4 -Sections - 1.0 to 7.0.
UNIT V : \quad Chapter 6 -Sections -1.0 to 6.0.
Note
Question paper setters to confine to the above text books only.

Pedagogy

Chalk and Talk, Seminar, Group Discussion, Numerical Exercises, Quiz and Case Study

Course Designers:

1.Dr.B.TamilSelvi,Associate Professor and Head, Department of Mathematics
2.Dr.D.Sasikala, Assistant Professor, Department of Mathematics

COURSE	COURSE NAME	CATEGORY	L	T	P	CREDIT
CODE TH21A08	ALLIED STATISTICS FOR					
	COMMERCE	ALLIED	$\mathbf{8 6}$	$\mathbf{4}$	-	$\mathbf{5}$

Preamble

$>$ To present students the Basic concepts of statistics.
$>$ To enable the students to find the practical applications to the real world problems.

Course Learning Outcomes

Upon the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Indicate the strength and direction of a linear relationship between two variables, regression and time series.	K1
CLO2	Construct simple price, quantity, and value indexes. Understand the concepts of a random variable and a probability distribution.	K2
CLO3	To measure progress toward quality improvement and public health goals.	K3
CLO4	Hypothesize various advanced statistical techniques for exploring practical situations.	K4

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	M	S	M	S
CLO2	M	S	M	S	M
CLO3	S	M	S	M	S
CLO4	M	S	M	S	S
CLO5	S	S	S	M	S

S-Strong; M-Medium; L-Low

Syllabus

SEMESTER IV
 Allied - Statistics for Commerce COMMON TO B.COM(Aided \& SF)

Credits 5
Hours 86

Subject Code : TH21A08

UNIT I

16Hrs
Correlation analysis: Introduction - Significance of the study of correlation - correlation and causation - Types of correlation- Methods of studying correlation - Graphic method - Karl Pearson's coefficient of correlation - Coefficient of correlation and probable error -Regression analysis. Analysis of time Series: Introduction - Utility of time series - Components of time series - Preliminary adjustments before analysing time series - Measurement of trend - Free hand graphic method - Method of semi averages - Moving average method - Measurement of seasonal variations - Method of simple averages - ratio to moving average - link relative
method.

UNIT II

19 Hrs

Index Numbers: Introduction - Uses of index numbers- Classification of index numbers problems in construction of index numbers - Methods of constructing index numbers- Quantity or volume index numbers - Value index numbers - Tests of adequacy of index number formulaeConsumer price index numbers-meaning and need-method of constructing the index- Index number of industrial production.

UNIT III

17 Hrs
Concepts of probability- Addition theorem-Multiplicative theorem - Conditional probability-Bayes theorem-Mathematical Expectation-Theoretical distributions-Binomial Distribution -Poisson distribution- Normal distribution.

UNIT IV

17 Hrs
Statistical Inference-Tests of hypothesis-Introduction-Procedure-Types of errors-Twotailed and one-tailed tests of hypothesis-standard error and sampling distribution-Tests of significance for large samples-Difference between small and large samples- Two tailed test and standard error of the difference between small and large samples-chi-square test and goodness of fit.

UNIT V

17 Hrs
Vital Statistics-Definition-Utility of vital statistics-Measures of populationand Vital statistics-Introduction-Measures of population - Measures of vital statistics - Mortality Rates Fertility Rates.

Text Books

S. No	Author	Title of the book	Publishers	Year Publication	
1.	S P Gupta	Statistical Methods	Sultan Chand \&Sons publishers	2004	
	Unit I :Volume I: Chapter: 10,11,14. Unit II: Volume I: Chapter: 13 Unit III: Volume II: Chapter: 1\&2 Unit IV: Volume II: Chapter:3\&4. 2.Veer BalaRastogiBiostatistics Third Revised Edition	MEDTECH	2015		
	Unit V: Chapter20; Sections:20.2, 20.2.1.,20.2.2. Chapter21:21.1,21.2,21.2.1,21.3,21.4,21.5				

Reference Books

S. No	Author	Title of the book	Publishers	Year of Publication
1.	P.A. Navnitham	Business Mathematics and Statistics	Jai Publishers, Trichy.	2003
2.	V.K.Kapoor	Fundamentals of Applied Statistics	 Sons	2007
3.	P.N.Arora Sumee Arora S.Arora	Comprehensive Statistical Methods	 Sons	2008

MOOC learning

https://www.youtube.com/watch?v=zlZaOnBbpUg
(1 lesson by Prof.Arunkanda, Department of Mechanical Engineering, IIT ,Delhi)

Lecture 35 - Analysis of Time Series
https://www.youtube.com/watch?v=JT9o8b43Gk0
Index numbers
https://nptel.ac.in/courses/102106051/
26 Lessons by Prof.MukeshDoble, IIT Madras
Lecture 1 - Introduction
Lecture 2 - Binomial Distribution
Lecture 3 - Poisson Distribution
Lecture 4 - Normal Distribution
Lecture 5-10 - T- test
Lecture 22-24 - Chi-Square test

Note

Question paper setters to confine to the above text books only

Pedagogy

Chalk and talk, PPT, Group discussion, Seminar, Quiz, Assignment

Course Designers

1. Ms.M.Deepa, Assistant Professor, Department of Mathematics
2. Ms.S.Narmatha, Assistant Professor, Department of Mathematics

Allied Courses Offered to other Programs

For the Students Admitted During the Year 2021-2022

Allied Courses Offered to other Programs For the Students Admitted During the Year 2021-2022

Semester I

B.SC (CS), B.SC (CS with Cognitive Systems), BCA, B.SC (IT)- Semester I \& B.SC (FPM)Semester III- Allied - Numerical and Statistical Techniques (TH21A03)
B. Com - Semester III \&B.COM (CA, E-COM, FS, A \& F) - Semester I

- Allied - Mathematics for Commerce - (TH21A07)
B. Com (BA) - Semester I - Allied - Statistics I (TH21A15)

BBA, BBA (IB \& RM), BBA (BPM) - Allied - Mathematics for Management I (TH21A02)
B.SC CS (AI) - Allied - Linear Algebra(TH21A25)

Semester II

B.SC (CS), B.SC (CS with Cognitive Systems), BCA, B.SC (IT) - Semester II \& B.SC (FPM) -

Semester IV - Allied - Discrete Mathematics (TH21A06)
B. Com -Semester IV \& B.COM (CA, E-COM, FS, A \& F) - Semester II

Allied - Statistics for Commerce - (TH21A08)
B. Com (BA) - Semester II - Allied - Statistics II (TH21A16)

BBA, BBA (IB \& RM), BBA (BPM) - Allied - Mathematics for Management II (TH21A24)
B.SC CS (AI) - Allied - Statistics For Computer Science-I (TH21A26)

Semester III

B.SC (CS), B.SC (CS with Cognitive Systems), BCA, B.SC (IT) - Allied - Optimization

Techniques (TH21A13)
B.Sc (Biotechnology) - Allied - Statistics for Biotechnology (TH21A28)

Semester IV

B.Sc (Biotechnology) - Allied - Advanced Statistics for Biotechnology (TH21A30)

	COURSE NAME	CATEGORY	L	T	P	CREDIT
COURSE CODE TH21A03	ALLIED - NUMERICAL	AND STATISTICAL	Theory	$\mathbf{8 6}$	$\mathbf{4}$	-
	TECHNIQUES					
	SEMESTER I					

Preamble

- To present students the Basic concepts of Numerical Methods and Statistics.
- To enable the students to find the practical applications to the real world problems.

Course Learning Outcomes

Upon the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Recall basic Mathematics and Statistical concepts	K1
CLO2	Interpret results from the application of standard statistical and numerical methods.	K2
CLO3	Understand the concepts of Numerical differentiation and Theoretical distributions	K3
CLO4	Applying numerical and statistical methods to solve complex problem.	K3
CLO5	Analyse and evaluate the accuracy of common numerical and statistical methods.	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	M	S	S	S
CLO2	S	S	M	S	S
CLO3	S	S	S	M	S
CLO4	S	S	S	S	M
CLO5	S	M	S	S	S

S-Strong; M-Medium; L-Low

Syllabus

SEMESTER I / II

Numerical and Statistical Techniques

(Common to B.SC (CS), B.SC (CS with Cognitive Systems), BCA, B.SC (IT)- Semester I B. SC(FPM) Semester III)

Credits: 5

Hours:86
Subject Code:TH21A03
Unit I
17 Hrs
SolutionofLinear Simultaneous Equations: Gauss elimination - Gauss Jordan - Gauss Seidel and Gauss Jacobi methods -simple problems. Interpolation: Newton Forward and Backward Interpolation Formulae.

Unit II

Numerical Differentiation, Formulae for Derivatives: Newton's Forward Difference Newton's Backward Difference, Numerical Integration: Introduction, Newton-Cotes Quadrature formulas: trapezoidal rule, Simpson's $1 / 3$ and $3 / 8$ rules, Taylor's series method.

Unit III

17 Hrs
Skewness - Correlation analysis: Introduction - Significance of the study of correlation correlation and causation - Types of correlation - Methods of studying correlation - Graphic method - Karl Pearson's coefficient of correlation - Coefficient of correlation and probable error Coefficient of determination - Properties of the coefficient of the correlation - Rank correlation coefficient - Features of Spearman's correlation coefficient, Regression analysis.

Unit IV

17 Hrs
Probability: Introduction - probability defined - Importance of the concept of probability Calculation of probability - Theorems of probability (statements only) -Mathematical expectation-Simple problems.

Unit V

19 Hrs
Theoretical Distributions: Binomial distribution - Poisson distribution and normal distribution (without derivations \& proof).

Text Books				
S. No	Author	Title of the book	Publishers	Year of Publication
1.	B.S. Grewal	Numerical Methods in Engineering and Science with Programs in C \& $\mathrm{C}++$	Khanna Publishers	2014
	Unit I: Chapter III \&VII: 3.3, 3.4, 3.5 \&7.1-7.3 Unit II: Chapter VIII\& X: 8.1, 8.2:(1,2),8.4, 8.5:(I, II, III),10.3			
2.	S.P.Gupta	Statistical methods	Sultan Chand \& Sons Publications	2005
	Unit III: Volume I: Chapter 9(till measures of skewness),10,11. (pg: 329-341, 377412, 435-454) Unit IV: Volume-II Chapter 1(till Baye's theorem) (pg: 751-771) Unit V : Volume-II Chapter2 (pg:805-824, 826-834, 836-856)			

Reference Books	Title of the book	Publishers	Year of Publica tion	
S. No	Author	P.A.Navanitham	Business Mathematics And Statistics	Jai Publishing Company
1.	S.C Gupta and V.K. Kapoor	Fundamentals of Mathematical Statistics	Sultan Chand \& Sons Publications	2003
3.	P.Kandasamy, K.Thilagavathy	Numerical Methods	S.Chand and company LTD	Reprint 2007

	and K.Gunavathy			
4.	V.K.Kapoor	Fundamentals of Applied Statistics	ultan Chand \& Sons	2007

MOOC learning

https://nptel.ac.in/courses/111/107/111107105/
(Lectures by Prof.Ameeya Kumar Nayak and Prof. Sanjeev Kumar, Department of
Mathematics, Indian Institution of Technology Roorkee)
Lecture 02 Gaussian elimination with partial pivoting
Lecture 04 Jacobi and Gauss Seidel methods
Lecture 20 Newton's Forward Difference \& Newton's Backward Difference
Lecture 34 Simpsons $1 / 3$ rd rule and $3 / 8$ rule
https://nptel.ac.in/courses/111/106/111106112/
(6 Lectures by Prof.G.Srinivasan, Department of Management Studies, Indian Institution of Technology Madras)

Lecture 12 Probability
Lecture 13 Rules of probability
Lecture 19 Binomial distribution
Lecture 20 Poisson distribution

Note

Question paper setters to confine to the above text books only

Pedagogy

Chalk and talk, ppt, Group discussion, Seminar, Quiz, Assignment

Course Designers

1.Ms.J.Rejula Mercy, Assistant Professor, Department of Mathematics
2. Ms.S.Deepa, Assistant Professor, Department of Mathematics

	COURSE NAME-	CATEGORY	L	T	P	CREDIT
COURSE	ALLIED MATHEMATICS	Theory	$\mathbf{8}$	$\mathbf{4}$	-	$\mathbf{5}$
CODE	FOR COMMERCE		$\mathbf{6}$			

Preamble

- To present the basic concepts of Mathematics to the students.
- To enable the students to find the practical applications to the real-world problems.

Course Outcomes

Upon the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Recollect about several diverse examples of mathematics not in secondary school mathematics, problems using mathematics in unfamiliar settings, and explain why mathematical thinking is valuable in daily life based on the series and Mathematics of Finance.	K1
CLO2	Engage in analysing, solving, and computing real-world applications on the limits of Algebraic functions and simple differentiation	K2
CLO3	Apply the abilities to describe the concepts of simple integration and its application in business. Solve problems in a range of mathematical applications using the integral.	K2
CLO4	Understand and formulate Linear Programming models for service and manufacturing systems, and apply operations research techniques and algorithms to solve these LP problems and transportation problems	K3
CLO5	Categories: simple models like assignment problems, travelling salesman to improve decision -making and develop critical thinking and objective analysis of decision problems.	K4

Mapping with Programme Outcomes

CLOs/PLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	S	M	S	M
CLO2	M	S	M	S	S
CLO3	M	S	S	M	S
CLO4	S	M	M	S	S
CLO5	M	S	M	S	M

S- Strong; M-Medium; L-Low

SEMESTER I / III
 ALLIED - MATHEMATICS FOR COMMERCE
 (COMMON TO SEMESTER I -B.COM (CA, E-COM, FS, A\&F) \& SEMESTER III B.COM (Aided \& SF))

Credits: 5
Subject Code: TH21A07
Unit I
Arithmetic Progression - Geometric Progression. Simple Interest- Compound Interest Annuities.

Unit II

17 Hrs
Differentiation: Introduction - Limits - Limits of a function - properties of limits Standard limit theorems - Continuity - Properties of Continuous functions - Differentiation Derivatives of x^{n} - Derivatives of e^{x} - Derivatives of $\log \mathrm{e}^{\mathrm{x}}$ - product rule - quotient rule Function of a function rule - Logarithmic Differentiation - Differentiation of Implicit function Relation between dy/dx and dx/dy - Parametric Differentiation - Successive Differentiation Applications of Derivatives - Marginal cost - Marginal revenue - Elasticity - Relation between marginal revenue and elasticity of demand -. Maxima and minima - Point of inflexion (Excluding Trigonometric functions).

Unit III

17Hrs

Integration : Arbitrary constant - Two general rules - Some standard results - Integration by Substitution - I - Integration by substitution - II - Integration by substitution - III - Standard results - Integration of rational function of the type - Integration by Partial fractions Integration of the function of the type $1 /\left((a x+b) s q r t\left(1 x^{2}+m x+n\right)\right)$ - Integration by parts - Definite integral - properties of definite integrals - An Application of integration - Marginal cost - Total cost and average cost - Marginal revenue, Total revenue and Average revenue (Excluding Trigonometric functions).

Unit IV

17 Hrs

Linear Programming: Meaning and Formulation of LPP - Graphical Method - Simplex Method Transportation problem: Mathematical formulation of the problem - Initial Basic feasible solution (Matrix Minima Method - North - West Corner rule and VAM)- Simple problems only.
Unit V
18 Hrs
Assignment Problem: Introduction- Mathematical formulation of assignment problemAssignment algorithm- unbalanced Assignment model- maximization case in assignment problems-Travelling Salesman Problem-Simple problems only.
Textbooks

S. No	Author	Title of the book	Publishers	Year of Publicati on
1.	P.R. Vittal	Business Mathematics and Statistics	Margham Publications	2002
	UNIT I: Chapter -6,7,8,9 \& 10 UNIT -II: Chapter -15 (Excluding Trigonometric functions) UNIT -III: Chapter -16 (Excluding Trigonometric functions)			
2.	V. Sunderesan, K.S. GanapathySubramani am, K. Ganesan	Operations research	A.R. Publications, 3rd Edition	2005

	UNIT IV: Chapter 2 Section: 2.1-2.8, Chapter - 3 : Section: 3.1.1-3.1.4,
Chapter 5 - Section :5.1	
UNIT V: Chapter 6 section 6.1,6.2,6.3,6.4,6.5,6.6, $6.7,6.9$	

Reference Books

S. No	Author	Title of the book	Publishers	Year of Publicat ion
1.	P.A. Navnitham	Business Mathematics and Statistics	Jai Publishers, Trichy.	2003
2.	P. Rama Murthy	Operations research	New age international Publishers	2007
3.	Manmohan and Gupta P K	Operations Research	Sultan Chand \& Sons	2011

MOOC learning

https://nptel.ac.in/courses/111/107/111107128/
(4 Lectures by Prof.Kusum Deep, Department of Mathematics, Indian Institution of Technology Roorkee)
Lecture 03 Graphical method
Lecture 05 Simplex method
Lecture 28 Transportation Problem
Lecture 29 Assignment Problem

Note

Question paper setters to confine to the above textbooks only

Pedagogy

Lecture by Chalk and talk, Power point presentation, E-content, Group discussion, Assignment, Quiz, Peer learning, Seminar.

Course Designers

1. Dr. R. Sakthikala, Assistant Professor, Department of Mathematics
2. Ms. S. Narmatha, Assistant Professor, Department of Mathematics

$\begin{gathered} \text { COURSE } \\ \text { CODE } \\ \text { TH21A15 } \end{gathered}$	COURSE NAMEALLIED STATISTICS ISEMESTER I	CATEGORY	L	T	P	$\begin{gathered} \text { CREDI } \\ T \end{gathered}$
		Theory	86	4	-	5

Preamble

- To present students the Basic concepts of statistics in terms of theory and practical.
- To enable the students to find the practical applications to the real world problems using EXCEL.

Course Learning Outcomes

- Upon the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Recall the basics concepts about collection and representation of data and Measures of central tendency	K1
CLO2	Perform statistical inference in several circumstances and interpret the results in an applied context.	K2
CLO3	Using Excel to gain proficiency skill for data analysis.	K3
CLO4	Distinguish types of studies and their limitations and strengths of Times Series and Index Numbers.	K3
CLO5	Analyse and evaluate the accuracy of common statistical methods.	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	M	S	M	S
CLO2	M	S	M	S	M
CLO3	S	M	S	M	S
CLO4	M	S	M	S	S
CLO5	S	S	S	M	S

S- Strong; M-Medium; L-Low

Syllabus

SEMESTER I
 ALLIED - STATISTICS I
 (For B COM BUSINESS ANALYTICS)

Credits: 5
Hours: 86
Subject Code: TH21A15
UNIT I
16 Hrs
Introduction-Meaning and objectives of Classification-Types of Classification-Formation of a discrete and continuous frequency Distribution-Tabulation of data- Parts of Table-General
rules of tabulation- Types of tables. Diagrammatic and Graphic Presentation: IntroductionSignificance of diagrams and graphs- General rules for constructing Diagrams-Types of diagrams- Graphs- Graphs of frequency distributions. Introduction to statistical software (like Excel) and learning graphs and diagrams using Excel.

UNIT II

19 Hrs

Measures of central tendency: Introduction-Objectives of Averaging-Requisites of a good average- Types of Averages-Geometric Mean-Harmonic Mean- Relationship among the averages - Measures of dispersion: Significance of Measuring variation - Properties of good measures of variation-methods of studying variation. Simple problems related to above mentioned concepts using Excel.

UNIT III

17 Hrs

Skewness: Introduction- Tests of skewness - Measures of skewness- Correlation analysis: Introduction - Significance of the study of correlation - correlation and causation Types of correlation - Methods of studying correlation - Graphic method - Karl Pearson's coefficient of correlation - Coefficient of correlation and probable error - Coefficient of determination - Properties of the coefficient of the correlation - Rank correlation coefficient Features of Spearman's correlation coefficient - Regression analysis.(Verification by excel)

UNIT IV

17 Hrs

Analysis of time Series -Introduction - Utility of time series - Components of time series - Preliminary adjustments before analyzing time series - Measurement of trend - Free hand or graphic method - Method of semi averages - Moving average method - Measurement of seasonal variations - Method of simple averages only - Ratio-to-trend Method - Ratio-to moving average method - Link relative method.

UNIT V

17 Hrs

Index Numbers: Introduction - Uses of index numbers - Classification of index numbers - Problems in construction of index numbers - Methods of constructing index numbers Quantity of volume index numbers - Value index numbers - Tests of adequacy of index number formulae. Interpolation: Introduction - Significance of interpolation and extrapolation Assumptions of interpolation and extrapolation - Methods of interpolation: Binomial expansion methods - Newton's method - Lagrange's method- Extrapolation

Text book				
S. No	Author	Title of the book	Publishers	Year of Publication
1.	S P Gupta	Statistical Methods	Sultan Chand \& Sons publishers	2004
	Unit I: Volume I: Chapter: 5, 6 Unit II: Volume I: Chapter: 7, 8. UNIT III: Volume I: Chapter: 9 (Pg No.329-341) (till measures of skewness),10,11. UNIT IV: Volume I: Chapter: 14 (Up to Link Relative Method) UNIT V:Volume I: Chapter: $13 \& 15$.			

Reference Books

S. No	Author	Title of the book	Publishers	Year of Publication
1.	P.A. Navnitham	Business Mathematics and Statistics	Jai Publishers, Trichy.	2003
2.	V.K.Kapoor	Fundamentals of Applied Statistics	Sultan Chand \& Sons	2007

Digital Demonstration using Excel

https://www.vertex42.com/edu/charts-and-graphs-in-excel.html
$>$ Graphs and charts
https://www.syncfusion.com/ebooks/statistics/descriptive-statistics
$>$ Measures of central tendency, Measures of dispersion
https://www.excel-easy.com/examples/regression.html
$>$ Regression

MOOC learning

https://www.youtube.com/watch?v=zlZaOnBbpUg
(1 lesson by Prof.Arunkanda, Department of Mechanical Engineering, IIT,Delhi)

- Lecture 35 - Analysis of Time Series
https://www.youtube.com/watch?v=JT9o8b43Gk0
- Index numbers

Note

- Question paper setters to confine to the above text books only

Pedagogy

Lecture by Chalk and talk, Power point presentation, E-content, Group discussion, Assignment, Quiz, Peer learning, Seminar.

Course Designers

1. Ms.M.Mohanapriya, Assistant Professor, Department of Mathematics
2. Dr. R. Sakthikala, Assistant Professor, Department of Mathematics

COURSE	COURSE NAME	CATEGORY	L	T	P	CREDIT
	ALLIED -MATHEMATICS	THEORY	$\mathbf{8}$	4	-	5
TH21A02	FOR MANAGEMENT I		6			
	SEMESTER I					

Preamble

- To inspire the students to get the knowledge in basic mathematical concepts
- Introducing the need for mathematics to recognize appropriate investigate and interpretive procedures in management

Course Learning Outcomes

CLO Number	CLO Statement	Knowledge Level
CLO1	This will exhibit fundamental mathematical concepts and analysis of real-world problems to non-Mathematician	K 1
CLO2	Apply mathematical results to find solutions in the real life like annuities and sampling theory	K2
CLO3	This will exhibit fundamental mathematical concepts and analysis of real-world problems to non-Mathematician	K2
CLO4	Develop the ability to formulate precise mathematical statements and essential skills that are progressively developed throughout the curriculum.	K3
CLO5	Connection between the key objectives main subject-specific areas and courses are indicated.	K4

Mapping with Programme Learning Outcomes

CLOs/PLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	S	S	M	S
CLO2	S	S	M	S	M
CLO3	S	S	S	S	S
CLO4	M	S	S	S	S
CLO5	S	S	S	M	S

S- Strong; M-Medium; L-Low

Syllabus

SEMESTER I
 ALLIED - MATHEMATICS FOR MANAGEMENT I
 (Common to BBA(Aided), BBA (IB \& RM), BBA (BPM))

Credits: 5
Hours 86
Subject Code:TH21A02

UNIT I

Arithmetic Progression-Geometric Progression-Matrices-Fundamental

17 hrs
ideas about

Matrices-operational Rules-Matrix Multiplication- Solving a system of linear equation by Cramer's rule and matrix inverse method, Inversion of Square Matrices of $3^{\text {rd }}$ order, rank, simple problems.

UNIT II

17 hrs
Mathematics of Finance- Simple and Compound Interest, Depreciation, Annuities, Sinking Fund, Discount on Bills.

UNIT III

17 hrs
Meaning and scope, statistical survey, collection of data, classification and tabulation, diagrams and graphs. Introduction to statistical software (like Excel) and learning graphs and diagrams using Excel.

UNIT IV

17 hrs
Measure of central tendency, arithmetic mean, median and mode, geometric and harmonic mean. Measures of dispersion: Range, Quartile deviation, mean deviation, standard deviation, coefficient of variation. Correlation - rank correlation. Simple problems related to above mentioned concepts using Excel.

UNIT V

18 hrs

Analysis of Time Series: Components of Time Series- Secular Trend- Moving Average Method-Method of Least Squares- Seasonal Variation- Method of Simple Average. Index numbers: Weighted and unweighted indices, cost of living index.

Text Books

$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Author	Title of the book	Publishers	Year of Publication
1.	P.R. Vittal	Business Mathematics and Statistics	Margham Publishers	2002
	UNIT I: Ch-6 \& 7 UNIT II: Ch-8,9,10,11			
2.	P.A. Navnitham	Business Mathematics And Statistics	Jai Publishers	2003
	UNIT I $:$ Vol I Ch-4 sections $: 1,2,3,4,5,6,7,9,10$ UNIT III $:$ Vol II Ch-1-6 UNIT IV $:$ Vol II Ch-7, 8. Ch-12: $(\operatorname{pg} 503-521)$ UNIT V $:$ Vol II Ch-14 (pg no:579-601) Ch- $10(444-471)$			

Reference Books

S.No.	Author	Title of Book	Publishers	Year of publication
1	S.P .Gupta	Statistical Method	Sultan Chand Publications	2002
2	Sundaresan, Jayaselan	An Introduction To Business Mathematics	Sultan Chand \& Sons	2003

MOOC learning

https://nptel.ac.in/courses/111/104/111104120/
Prof Shalabh, Department of Mathematics, IIT Kanpur
Lecture 14Airthmetic mean
Lecture 15 Median
Lecture 16 Quartiles
Lecture 17 Mode Geometric mean
Lecture 20 Mean and standard deviation
Lecture 21 coefficient of variation
https://nptel.ac.in/courses/111/106/111106112/
Prof G. Srinivasan,Department of Mathematics, IIT Madras
Lecture 1: Introduction to probability and statistics
Lecture 2: Types of data
Lecture 4: Data and diagram

Note

Question paper setters to confine to the above text books only

Pedagogy

Chalk and talk, PPT, Group discussion, Seminar, Quiz, Assignment

Course Designers

1. Ms.S.Lakshmi, Assistant Professor, Department of Mathematics
2. Ms.J.Rejula Mercy, Assistant Professor, Department of Mathematics

COURSE	COURSE NAME	CATEGORY	L	T	P	CREDIT
	CODE	ALLIED - LINEAR	Theory	$\mathbf{8}$	$\mathbf{4}$	-
TH21A25	ALGEBRA		6			

Preamble

- To present students the Basic concepts of linear algebra.
- To enable the students to find the practical applications to the real world problems.

Course Learning Outcomes

Upon the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Develop the use of matrix algebra techniques which is needed by engineers for practical applications	K1
CLO2	Apply the tools of vector spaces to decompose complex matrices into	K2
CLO3	Recognize and use basic properties of subspaces and vector spaces	K3
CLO4	Understand the concept of real and complex inner product spaces and their applications in constructing approximations and orthogonal projections	K3
CLO5	Compute Eigen values and Eigen vectors and use them to diagonalizable matrices and simplify representation of line at transformations	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	M	S	S	S	S
CLO2	S	S	M	S	S	S
CLO3	S	S	S	M	S	S
CLO4	S	S	S	S	M	S
CLO5	S	M	S	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

B.SC CS(AI)
 LINEAR ALGEBRA

UNIT I

(17 hrs)
Linear Equations and Matrices: Systems of Linear Equations, Gaussian Elimination, Vector Arithmetic, Arithmetic of Matrices, Matrix Algebra, The Transpose and Inverse of a Matrix, Types of Solutions, The Inverse Matrix Method

UNIT II

(17 hrs)
Euclidean Space: Properties of Vectors, Further Properties of Vectors, Linear Independence, Basis and Spanning Set

UNIT III

General Vector Spaces: Introduction to General Vector Spaces, Subspace of a Vector Space, Linear Independence and Basis, Dimension

UNIT IV
(17 hrs)
Inner Product Spaces: Introduction to Inner Product Spaces, Inequalities and Orthogonality, Orthonormal Bases, Orthogonal Matrices

UNIT V

Eigen values and Eigenvectors: Determinant of a Matrix, Introduction to Eigen values and Eigenvectors, Properties of Eigen values and Eigenvectors, Diagonalization, Diagonalization of Symmetric Matrices

Text Book

S. No	Author	Title of the book	Publishers	Year of Publication
1.	Kuldeep Singh	Linear Algebra Step by Step	Oxford University Press	2014
	Unit I: Chapter I			
	Unit II: Chapter II Unit-III : Chapter III 3.1-3.4 Unit-IV: Chapter IV Unit-V: Chapter VI - 6.1, Chapter VII -7.1-7.4			

Reference Books

$\begin{aligned} & \text { S. } \\ & \text { No } \\ & \hline \end{aligned}$	Author	Title of the book	Publishers	Year of Publication
1.	Gilbert Strang	Introduction to Linear Algebra	WellesleyCambridge Press	$\begin{aligned} & 2016\left(5^{\text {th }}\right. \\ & \text { Edition) } \end{aligned}$
2.	David C. Lay, Steven R. Lay, Judi J. McDonald.	Linear Algebra and Its Applications,	earson Education	(2014)
3.	David C. Lay.Steven R.Lay. JudJ.McDonald	Linear Algebra and Its Applications,	Pearson	$\begin{aligned} & 2014 \\ & 5^{\text {th }} \\ & \text { Edition, } \end{aligned}$

Question paper setters to confine to the above text books only

MOOC learning

https://nptel.ac.in/courses/111/106/111106051/\#

Lecture 1: Systems of Linear Equations, Gaussian Elimination
Lecture 2: Introduction to General Vector Spaces, Subspace of a Vector Space
Lecture 3: Linear Independence, Basis and Spanning Set
Lecture 9: Introduction to Inner Product Spaces, Inequalities and Orthogonality

Lecture 6: Introduction to Eigenvalues and Eigenvectors, Properties of Eigenvalues and Eigenvectors, Diagonalization, Diagonalization of Symmetric Matrices

Pedagogy

Chalk and talk, ppt, Group discussion, Seminar, Quiz, Assignment

Course Designers

1. Dr. C.R. Parvathy, Associate Professor, Department of Mathematics
2. Mrs. R. Meenambigai, Assistant Professor, Department of Mathematics

	COURSE NAME	CATEGORY	L	T	P	CREDIT
	CODE	ALLIED DISCRETE	Theory	$\mathbf{8}$	$\mathbf{4}$	-
TH21A06	MATHEMATICS		$\mathbf{6}$			
	SEMESTER II					

Preamble

- Principle of Mathematical Structures which are essential and related to the concepts of Computer Science. This helps the students to approach any Mathematical Problem which arise in the field of Computer Science

Course Learning Outcomes

Upon the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Identify Mathematical logic and definitions and well-formed formula and Outline the understanding of Tautology and Equality relations thereby helps students to understand ambiguity and disagreement in real world problems	K1
CLO2	Lattices and Boolean algebras enables one to understand applications in logic, circuit theory, and probability	K2
CLO3	Demonstrate the importance of Graph Theory in Computer Science	K3
CLO4	Apply and Demonstrate algebraic concepts in Coding theory using group codes enhances their ability to detect and correct errors	K3
CLO5	Analyze if a given graph is simple or a multigraph, directed or undirected, cyclic or acyclic, and determine the connectivity of a graph	K4

Mapping with Programme Learning Outcomes

CLOs/PL Os	PLO1	PL O2	PL O3	PL O4	PL O5
CLO1	S	S	S	S	M
CLO2	S	S	S	M	S
CLO3	S	S	S	S	S
CLO 4	M	S	M	S	S
CLO5	S	S	S	S	S

S- Strong; M-Medium; L-Low

SEMESTER - II

ALLIED - DISCRETE MATHEMATICS

Common to B.SC (CS), B.SC (CS with Cognitive Systems), BCA, B.SC (IT)
 Credits 5
 Hours 86

Subject Code :TH21A06

Unit I

17 Hrs
Mathematical Logic: Connectives- Statement Formulas and Truth Tables - Conditional and Biconditional - Well formed Formulas - Tautologies - Equivalence of Formulas -Duality law -Tautological implications -Normal forms - Theory of inference for the Statement Calculus Predicate Calculus.

Unit II

17 Hrs
Coding Theory: Introduction - Hamming distance - Encoding a message - Group codes Procedure for generating Group Codes - Decoding and Error Correction - An example of a Simple error correcting code.

Unit III

17 Hrs

Formal languages and Automata: Grammar and Languages -Phrase Structure grammar Types of Phrase Structure Grammar - Backus-Naur form [BNF] - Finite State Acceptors and Regular Grammars : Deterministic finite automata-Non-Deterministic finite-State automataConversion of Non-Deterministic finite automata to finite state automata.

Unit IV

19 Hrs

Lattice and Boolean Algebra: Lattices as Partial ordering set - Some Properties of Lattices- Distributive lattices-Complemented Distributive Lattices-Boolean algebra - Boolean Function - Representation and Minimization of Boolean function using K-Map.

Unit V
16 Hrs
Graph Theory: Basic Concepts of Graph Theory - Path, Reachability and Connectedness - Circuits-Hamiltonian Paths- Euler paths-Matrix representation-Incidence matrix-Adjacency matrix-Tree and Binary tree - Theorems-Statement only(No Proof).

Text Books				
$\begin{aligned} & \hline \text { S. } \\ & \text { No } \end{aligned}$	Author	Title of the book	Publishers	Year of Publicatio n
1.	J.P.Tremblay and R.Manohar	Discrete Mathematical Structures with Applications to Computer Science	McGraw Hill Publishing Company	Edition 1997, Reprint 2008
	```Unit I : Section: 1.2.1-1.2.4, 1.2.6-1.2.11, 1.3.1-1.3.4, 1.4.1-1.4.2, 1.5.1 - 1.5.4 Unit III : Section: 3.3.1 -3.3.3, 6.1.1 Unit IV : Section: 4.1.1 -4.3.1,4.4.1, 4.4.2 Unit V : Section: 5.1.1 -5.2.2```			


2.	Dr. M.K.   Venkataraman,   Dr. N. Sridharan   and   N. Chandrasekaran	Discrete   Mathematics	The National   Publishing   company,   Chennai	First edition   Reprint 2003,
	Unit II: Chapter 8 Sections 8.1-8.7			

## Reference books

S.NO	Author	Title of the book	Publishers	Year of   publication
1	T.Veerarajan	Discrete Mathematics with   Graph Theory and   Combinatorics	Tata mcgraw-   Hill   publishing   company   Limited	2008
2	NarSinghDeo	Graph Theory with   Applications to Engineering   and Computer Science	PHI, India	2006
3	T. Santha and   P. Radha	Discrete Mathematics for   Computer Science and   Applications	Kalaikathir   Publications	2002

## MOOC learning

https://nptel.ac.in/courses/111/107/111107058/
(Lectures by Dr.AditiGangopadhyay, Dr.SugataGangopadhyay and Dr.TanujaSrivastava,
Department of Mathematics, IIT Roorkee)
Lecture 06 Logical Inferences
Lecture 32 Lattices
Lecture 33 Boolean algebra
Lecture 17 Basic definition
Lecture 18 Isomorphism and sub graphs
Lecture 19 Walks, paths and circuits operations on graphs
Lecture 20 Euler graphs, Hamiltonian circuits

## Note

Question paper setters to confine to the above text books only

## Pedagogy

Chalk and talk, Powerpoint Presentation, E-Content, Group discussion, Seminar, Quiz, Assignment and Peer learning

## Course Designers

1. Ms.S.Sreeja, Assistant Professor, Department of Mathematics
2. Ms.S.Deepa, Assistant Professor, Department of Mathematics

COURSE	COURSE NAME	CATEGORY	L	T	P	CREDIT
	CODE	ALLIED STATISTICS	Theory	$\mathbf{8}$	$\mathbf{4}$	-
TH21A08	FOR COMMERCE		$\mathbf{6}$			5
	SEMESTER II					

## Preamble

- To present students the Basic concepts of statistics.
- To enable the students to find the practical applications to the real world problems.


## Course Learning Outcomes

Upon the successful completion of the course, students will be able to

CLO   Number	CLO Statement	Knowledge   Level
CLO1	Indicate the strength and direction of a linear relationship between   two variables, regression and time series.	K1
CLO2	Construct simple price, quantity, and value indexes.	K2
CLO3	Understand the concepts of a random variable and a probability   distribution.	K2
CLO4	To measure progress toward quality improvement and public health   goals.	K3
CLO5	Hypothesize various advanced statistical techniques for exploring   practical situations.	K4

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	M	S	M	S
CLO2	M	S	M	S	M
CLO3	S	M	S	M	S
CLO4	M	S	M	S	S
CLO5	S	S	S	M	S

S-Strong; M-Medium; L-Low

## Syllabus

# SEMESTER II/IV <br> Allied - Statistics for Commerce <br> COMMON TO B.COM(Aided \& SF) - SEMESTER IV AND B.COM (CA, E-COM, FS, A\&F) - SEMESTER II 

Credits 5
Subject Code : TH21A08

## UNIT I

16Hrs
Correlation analysis: Introduction - Significance of the study of correlation - correlation and causation - Types of correlation - Methods of studying correlation - Graphic method - Karl Pearson's coefficient of correlation - Coefficient of correlation and probable error -Regression analysis. Analysis of time Series: Introduction - Utility of time series - Components of time series - Preliminary adjustments before analysing time series - Measurement of trend - Free hand graphic method - Method of semi averages - Moving average method - Measurement of seasonal variations - Method of simple averages - ratio to moving average - link relative method.

## UNIT II

## 19 Hrs

Index Numbers: Introduction - Uses of index numbers - Classification of index numbers - problems in construction of index numbers - Methods of constructing index numbers Quantity or volume index numbers - Value index numbers - Tests of adequacy of index number formulae- Consumer price index numbers-meaning and need-method of constructing the indexIndex number of industrial production.

## UNIT III

## 17 Hrs

Concepts of probability- Addition theorem-Multiplicative theorem - Conditional probability-Bayes theorem-Mathematical Expectation-Theoretical distributions-Binomial Distribution -Poisson distribution- Normal distribution.

## UNIT IV

## 17 Hrs

Statistical Inference-Tests of hypothesis-Introduction-Procedure-Types of errors-Twotailed and one-tailed tests of hypothesis-standard error and sampling distribution-Tests of significance for large samples-Difference between small and large samples- Two tailed test and standard error of the difference between small and large samples-chi-square test and goodness of fit.

## UNIT V

17 Hrs
Vital Statistics-Definition-Utility of vital statistics-Measures of population and Vital statistics-Introduction-Measures of population - Measures of vital statistics - Mortality Rates Fertility Rates.
Text Books

S.   No	Author	Title of the   book	Publishers	Year of   Publication
	S P Gupta	Statistical   Methods	Sultan Chand \&Sons   publishers	2004
	Unit I :Volume I: Chapter: 10,11,14.   Unit II: Volume I: Chapter: 13   Unit III: Volume II: Chapter: 1\&2   Unit IV: Volume II: Chapter:3\&4.			
	Veer   BalaRast   ogi	Biostatistics   Third Revised   Edition	MEDTEC   H	2015
	Unit V: Chapter20; Sections:20.2,20.2.1.,20.2.2.   Chapter21:21.1,21.2,21.2.1,21.3,21.4,21.5			

## Reference Books

S.   No	Author	Title of the book	Publishers	Year of   Publication
1.	P.A.   Navnitham   2.	Business Mathematics and   Statistics	Jai   Publishers,   Trichy.	2003
3.	P.N.ARORA	  Sons	2007	
SUMEET   ARORA,   Statistics	Comprehensive Statistical   Methods	  Sons	2008	
S.ARORA				

## MOOC learning

https://www.youtube.com/watch?v=zlZaOnBbpUg
( 1 lesson by Prof.Arunkanda, Department of Mechanical Engineering, IIT ,Delhi)
Lecture 35 - Analysis of Time Series
https://www.youtube.com/watch?v=JT9o8b43Gk0
Index numbers
https://nptel.ac.in/courses/102106051/
26 Lessons by Prof.MukeshDoble, IIT Madras
Lecture 1 - Introduction
Lecture 2 - Binomial Distribution
Lecture 3 - Poisson Distribution
Lecture 4 - Normal Distribution
Lecture 5-10 - T- test
Lecture 22-24 - Chi-Square test

## Note

Question paper setters to confine to the above text books only

## Pedagogy

Chalk and talk, PPT, Group discussion, Seminar, Quiz, Assignment

## Course Designers

1. Ms.M.Deepa, Assistant Professor, Department of Mathematics
2. Ms.S.Narmatha, Assistant Professor, Department of Mathematics

COURSE	COURSE NAME	CATEGORY	L	T	P	CREDIT
CODE	ALLIED STATISTICS II	ALLIED	$\mathbf{8}$	$\mathbf{4}$	-	$\mathbf{5}$
TH21A16	SEMESTER II		6			

## Preamble

- To provide the use of mathematical process skills to identify, pose and solve problems creatively, critically and practically
- To make students to understand statistical principles with theoretical concepts and problems.
- To provide the wide knowledge of real time applications and to clear the competitive exams.


## Course Learning Outcomes

Upon the successful completion of the course, students will be able to

CLO   Number	CLO Statement	Knowledge   Level
CLO1	Recall basic concepts of data description and its   representation and understand the basic principles of   probability and sampling theory	K1
CLO2	Understand the logic and framework of the inference of   hypothesis testing.	K2
CLO3	Formulate and apply small samples, large sample and non-   parametric tests in real life problems.	K3
CLO4	Apply probability as a tool for anticipating the distribution of   data and using appropriate method to draw conclusions.	K3
CLO5	Interpret and evaluate results correctly in experimental design   and draw reasonable conclusions	K4

## Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	S	M	S	S
CLO2	S	S	M	S	S
CLO3	S	S	M	S	S
CLO4	S	S	S	S	S
CLO5	S	S	M	S	S

S- Strong; M-Medium; L-Low

# SEMESTER II <br> ALLIED - STATISTICS II (FOR B COM (BUSINESS ANALYTICS)) 

Credits: 5
Total Hours: 86
Subject Code: TH21A16

## Unit I

17 Hrs
Brief History- meaning \& Usefulness-Mathematical properties- permutation \& Combination-Trail, event- sample space-mutually exclusive cases- exhaustive eventsindependent events-dependent events, simple and compound events- measurement-classical, relative frequency - theory of probability-limitations- personalistic view of probability and axiomatic approach of probability- addition and multiplication theorems.

## Unit II

17Hrs
Theoretical Distributions: Binomial Distributions - Poisson Distributions - Normal Distributions.

## UNIT III

18 Hrs
Tests of hypotheses- Introduction- Standard error and Sampling Distribution-EstimationTest of significance for large samples- Test of significance for small samples: Students $t$ distribution- chi-square test and goodness of fit (Except Yates correction). Simple problems using SPSS.

## UNIT IV

17 Hrs
F test - Analysis of variance: One-way classification-two-way classification. Simple problems using SPSS.

## UNIT V

17 Hrs
Experimental Design- Introduction-Randomized Block Design-Latin SquaresRandomized Blocks Vs Latin Squares-Latin cubes.


		Mathematical Statistics	$\&$ Sons   publishers.	
2.	EelkoHuizingh	Applied Statistics with   SPSS	Sage   Publications	2007

## Digital Demonstration using SPSS

https://academic.udayton.edu/gregelvers/psy216/spss/ttests.htm t test
https://statistics.laerd.com/spss-tutorials/one-way-anova-using-spss-statistics.php
> One way ANOVA
https://statistics.laerd.com/spss-tutorials/two-way-anova-using-spss-statistics.php

## > Two way ANOVA

## MOOC learning

https://nptel.ac.in/courses/102106051/

## (26 Lessons by Prof.MukeshDoble, IIT Madras)

- Lecture 1 - Introduction
- Lecture 2 - Binomial Distribution
- Lecture 3 - Poisson Distribution
- Lecture 4 - Normal Distribution
- Lecture 5-10 - T- test
- Lecture 11-13 - F test
- Lecture 14-20 - ANOVA
- Lecture 22-24 - Chi-Square test
- Lecture 32- Design of Experiments (Introduction)

Note
Question paper setters to confine to the above text books only

## Pedagogy

Lecture by Chalk and talk, Power point presentation, E-content, Group discussion, Assignment, Quiz, Peer learning, Seminar.

## Course Designers

1. Ms. M. Mohanapriya, Assistant Professor, Department of Mathematics
2. Dr. R. Sakthikala, Assistant Professor, Department of Mathematics

COURSE	COURSE NAME	CATEGORY	L	T	P	CREDIT
	MATHEMATICS FOR	Theory	$\mathbf{8}$	$\mathbf{4}$	-	5
TH21A24	MANAGEMENT II		6			
	SEMESTER II					

## Preamble

- To impart the students with knowledge in basic mathematical concepts.


## Course Learning Outcomes

Upon the successful completion of the course, students will be able to

CLO   Number	CLO Statement	Knowledge   Level
CLO1	Understand the basic concepts and application of operation   research in various fields.	K1,K2
CLO2	Understand and applying the managerial problems in industry   so that they are able to use resources (capitals, materials,   staffing, and machines) more effectively.	K2,K3
CLO3	Formulate and solve the transportation problems using both manual   methods and interpret the solutions.	K3,K4
CLO4	Illustrate the theoretical framework to conceive social situations   among competing players and produce optimal decision-making of   independent and competing actors in a strategic setting.	K3
CLO5	Discuss the powerful coordinating tool for planning, scheduling and   controlling of projects and minimization of total project cost and   time.	K3,K4

## Mapping with Programme Learning Outcomes

CLOs/PLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	S	S	M	S
CLO2	S	S	M	S	M
CLO3	S	S	S	S	S
CLO4	S	M	S	S	S
CLO5	S	S	S	M	S

S- Strong; M-Medium; L-Low

## Syllabus

# SEMESTER II <br> MATHEMATICS FOR MANAGEMENT II <br> Common to BBA (Aided), BBA (IB \& RM), BBA (BPM) 

Credits 5
Hours 86

## Subject Code:TH21A24

## UNIT I

17 Hrs
Introduction to operation research: Meaning and Objective of OR - Scope of OR in Retail Business - Models in OR - Characteristics - Benefits - Limitations.

## UNIT II

17 Hrs
Linear Programming: Meaning and Formulation of LPP - Graphical Method - Simplex Method.

## UNIT III

17 Hrs
Transportation problem: Mathematical formulation of the problem - Initial Basic feasible solution (Matrix Minima Method - North - West Corner rule and VAM) - Moving towards optimality Assignment problem -Travelling salesmen problem.

## UNIT IV

17 Hrs
Game Theory: Useful Terminology - Rules for Game Theory - Pure Strategy - Mixed Strategy ( $2 \times 2$ games, 2 x n games or $\mathrm{m} \times 2$ games) - dominance property.

## UNIT V

19 Hrs
Network Analysis: Network (Arrow diagram) Logic - Critical Path Method (CPM) - Programme Evaluation and Review Technique (PERT).

## Text book

S.   No	Author	Title of the book	Publishers	Year of   Publication
1.	V.Sunderesan   K.S.Ganapathy   Subramaniam,   K.Ganesan	Operations research	A.R.Publications,   3rd Edition	2005
	UNIT I: Chapter 1 sections 1.1-1.9			
	UNIT II: Chapter 2 sections 2.1-2.8 Chapter 3 sections 3.1.1-3.1.4.      UNIT III: Chapter 5 sections 5.1-5.5 Chapter 6 sections 6.1-6.9      UNIT IV :Chapter 13 sections13.1-13.7   UNIT V : Chapter 8 sections 8.1-8.7			

## Reference Books

S. No	Author	Title of the book	Publishers	Year of   Publication
1.	S.Kalavathy	Operations Research	Vikas   publishing   house	2008
2	D.S.Cheema	Operations Research	LaxmiPublicat   ons	2010
3	Prem Kumar   gupta	Operations Research	S.Chand	2004
4	Michael   W.carter	Operations Research	Crp press	2008

## MOOC learning

https://nptel.ac.in/courses/111/107/111107128/
Prof Kusum Deep, Department of Mathematics, IIT Roorkee
Lecture 1 : Introduction to OR model
Lecture 3 : Graphical method for Linear programming problem
Lecture 15: Simplex method
Lecture 8: Unbounded solution
Lecture 7 : Multiple solution
https://nptel.ac.in/courses/112/106/112106134/
Prof G. Srinivasan ,Department of Management Studies, IIT Madras
Lecture 1 : Introduction to LPP
Lecture 13: Transportation problem
Lecture 16 : Assignment problem
Lecture 17 :Hungarian method.

## Note

Question paper setters to confine to the above text books only Pedagogy

Chalk and talk, PPT, Group discussion, Seminar, Quiz, Assignment

## Course Designers

1.Ms.S.Lakshmi, Assistant Professor, Department of Mathematics
2.Dr.C.R.Parvathy, Associate Professor, Department of Mathematics

$\begin{gathered} \text { COURSE } \\ \text { CODE } \\ \text { TH21A26 } \end{gathered}$	COURSE NAME	CATEGORY	L	T	P	CREDIT
	ALLIED - STATISTICS   FOR COMPUTER SCIENCE I SEMESTER II	Theory	86	4	-	5

## Preamble

- This course introduces the fundamental concepts of probability and random variables .It also provides knowledge in discrete and continuous distributions. It deals with various sampling distributions like t , F , chi-square distributions etc.


## Course Learning Outcomes

Upon the successful completion of the course, students will be able to

CLO   Number	CLO Statement	Knowledge   Level
CLO1	Demonstrate the basic concepts of statistics	K1
CLO2	Identify the methods for different measures of central tendency,   dispersion	K2
CLO3	Indicate the strength and direction of a linear relationship between   two variables, regression and time series.	K3
CLO4	Demonstrate advanced understanding of the concepts of time series	K3
CLO5	Construct simple price, quantity, and value indexes.	K4

## Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	M	S	S	S	S
CLO2	S	S	M	S	S	S
CLO3	S	S	S	M	S	S
CLO4	S	S	S	S	M	S
CLO5	S	M	S	S	S	S

S- Strong; M-Medium; L-Low

## Syllabus

## BSC CS(AI) <br> STATISTICS FOR COMPUTER SCIENCE I

## UNIT I

16 hrs
Introduction-Meaning and objectives of classification-Types of classification-Formation of a discrete and continuous frequency distribution-Tabulation of data- Parts of table- General rules of tabulation- Types of tables. Diagrams and graphs. Introduction to statistical software ( like Excel) and learning graphs and diagrams using Excel.

## UNIT II

19 hrs

Measures of location or central tendency: Arithmetic mean, Median, Mode, Geometric mean, Harmonic mean. Partition values: Quartiles, Deciles and percentiles. Measures of dispersion: Mean deviation, Quartile deviation, Standard deviation, Coefficient of variation. Moments: measures of skewness, Kurtosis.

## UNIT III

17 hrs
Correlation analysis: Introduction - Significance of the study of correlation - correlation and causation - Types of correlation - Methods of studying correlation - Graphic method - Karl Pearson's coefficient of correlation - Coefficient of correlation and probable error - Coefficient of determination - Properties of the coefficient of the correlation - Rank correlation coefficient Features of Spearman's correlation coefficient, Regression analysis.

## UNIT IV

17 hrs
Analysis of time Series -Introduction - Utility of time series - Components of time series - Preliminary adjustments before analyzing time series - Measurement of trend - Free hand graphic method - Method of semi averages - Moving average method - Measurement of seasonal variations - Method of simple averages only - Ratio-to-trend Method - Ratio-to moving average method - Link relative method.

## UNIT V

## 17 hrs

Index Numbers: Introduction - Uses of index numbers - Classification of index numbers - Problems in construction of index numbers - Methods of constructing index numbers Quantity of volume index numbers - Value index numbers - Tests of adequacy of index number formulae. Interpolation: Introduction - Significance of interpolation and extrapolation Extrapolation - Assumptions of interpolation and extrapolation - Methods of interpolation Binomial expansion methods - Newton's method - Lagrange's method.

## Text Book

S.   No	Author	Title of the   book	Publishers	Year of   Publication
1.	S P Gupta	Statistical   Methods	Sultan Chand   \&Sons publishers	2004
	Unit I: Volume I: Chapter: 1   Unit II: Volume I: Chapter: 2               Unit III:Volume I: Chapter10,11   Unit IV: Volume I:Chapter 14   Unit-V : Volume I: Chapter 13			


Reference Books				
S. No	Author	Title of the book	Publishers	Year of   Publication
1.	P.N.Arora   SumeetArora,   S.Arora	Comprehensive   Statistical Methods	ultan Chand \& Sons	2008
2.	David Lane,	Introduction to   Statistics	pavid Lane	2003
3.	Krishnan Vijaya	Statistics for   Beginners	Atlantic Publishers   $\&$ Distributors Pvt   Ltd	2011
4.	S.C Gupta and   V.K. Kapoor	Fundamentals of   Mathematical	ultan Chand \& Sons   Publications	2001


		Statistics	
Note			

Question paper setters to confine to the above text books only

## MOOC learning

https://nptel.ac.in/courses/110/107/110107114/
Lecture 1: Introduction-Meaning and objectives of classification, Diagrams and graphs Lecture 2: Measures of location or central tendency
https://nptel.ac.in/courses/111/105/111105042/
Lecture 1: Regression analysis
https://www.youtube.com/watch? $v=$ WM8vzYSQhs
Module 1: Lecture 39: Regression Analysis and Correlation https://www.youtube.com/watch?v=zlZaOnBbpUg
(Lesson by Prof. Arunkanda, Department of Mechanical Engineering, IIT ,Delhi)
Lecture 35 - Analysis of Time Series
https://www. youtube.com/watch?v=JT9o8b43GkO
Index numbers
https://nptel.ac.in/courses/102106051/

## Pedagogy

Chalk and talk, ppt, Group discussion, Seminar, Quiz, Assignment

## Course Designers

1. Dr.C.R.Parvathy, Associate Professor, Department of Mathematics
2. Mrs.R.Meenambigai, Assistant Professor, Department of Mathematics

$\begin{aligned} & \text { COURSE } \\ & \text { CODE } \end{aligned}$	COURSE NAME ALLIED-OPTIMIZATION TECHNIQUES	CATEGORY	L	T	P	CREDIT
TH21A13		Allied	86	4	-	5

## Preamble

$>$ To introduce the fundamental concepts of Optimization Techniques
$>$ To make the learners aware of the importance of optimizations in real scenarios
$>$ To learn about the managerial concepts like decision making, optimization etc.

## Course Learning Outcomes

Upon the successful completion of the course, students will be able to

CLO   Number	CLO Statement	Knowledge   Level
CLO1	Recall the basic concepts and application of operation research in   various fields.	K1
CLO2	Understanding various concepts such as LPP, assignment,   transportation, travelling salesman, networking etc through   algorithms and problems.	K2
CLO3	Applying the importance, value of Operations Research and its   mathematical modeling for solving practical problems occurring in real   world	K3
CLO4	Analyzing different situations in the industrial/ business scenario   involving limited resources and finding the optimal solution within   constraints.	K4

## Mapping with Programme Learning Outcomes

CLOs/   POs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	M	S	S	S
CLO2	S	S	M	S	S
CLO3	S	S	S	S	M
CLO4	S	S	S	S	S

S-Strong; M-Medium; L-Low

## Syllabus

## COMMON TO B.Sc (CS/IT), B.Sc (CS with Cognitive systems) \& BCA ALLIED-OPTIMIZATION TECHNIQUES

## UNIT I

16 hrs
Linear programming: Introduction-Mathematical formulation of the problem- Graphical solution -General LPP - Canonical \& standard forms of LPP - Simplex method- Big- M method.

## UNIT II

17 hrs
Transportation problem: Mathematical formulation of the problem-Initial Basic feasible solution (Matrix Minima Method - North - West Corner rule and VAM) - Moving towards optimality- Assignment problem- Travelling salesman.

## UNIT III

18 hrs
Game theory: Concept of pure and mixed strategies - Solving $2 \times 2$ matrix with and without saddle point- Graphical method for $2 \mathrm{x} \mathrm{n} \mathrm{-} \mathrm{~m} \mathrm{x} 2$ games - Matrix oddment method. Dominance property.

## UNIT IV

18 hrs
Queuing theory: Problems from single server, finite and infinite population. (Derivations not included). Sequencing Problems: Problems with N Jobs through 2 Machines - Problems with N Jobs through 3 Machines.

## UNIT V

17 hrs
Network scheduling by PERT / CPM: Introduction - basic terminologies - rules for constructing a project network-critical path method-floats -PERT-Cost considerations in PERT and CPM Crashing.

## Text Book

S.   No	Author	Title of the book	Publishers	Year of Publication
1.	V.Sunderesan,   K.S.Ganapathy   Subramaniam,   K.Ganesan	Operations research	A.R.Publications,   $3^{\text {rd }}$ Edition	2005
	UNIT I: Chapter 2 session 2.1-2.8, Chapter-3 :session: 3.1.1 -3.1.4,3.2,3.2.1   UNIT II: Chapter 5 session 5.1 -5.5, Chapter-6 :session 6.1-6.9   UNIT III: Chapter 13 session 13.1-13.5, 13.7.   UNIT IV: Chapter 11 section11.1-11.6(exclude 11.5)   Chapter14 section14.1-14.4			
UNITV: Chapter 8 session 8.1-8.8				

## Reference Books

S.   No	Author	Title of the book	Publishers	Year of   Publication
1.	Billy E.Gillett	Introduction to   Operations Research	Tata McGraw -   Hill	2001
2	Kalavathy.S	Operations Research	Vikas publishing   house	2008
3	Kanti Swarup Etal	Operations Research	  Sons	2009
4	Manmohan   and Gupta PK	Operations Research	  Sons	2011
5	D.S.Cheema	Operations Research	Laxmi Publicatons	2010

## MOOC learning

https://nptel.ac.in/courses/111/107/111107128/
(Lectures by Prof. Kusum Deep, IIT Roorkee)

- Graphical Method for LPP

Simplex Method

- Big M Method
- Transportation Problem
- Assignment Problem
- Processing n Jobs on Two Machines
- Processing n Jobs through Three Machines
- Two Person Zero-Sum Game
- Solution of Mixed Strategy Games

E- Content

1) Standard and Canonical form: https://www.youtube.com/watch?v=-1jpfY0zA7s
2) Transportation problems: https://www.youtube.com/watch?v=ItOuvM2KmD4
3) Game theory: https://www.youtube.com/watch?v=fSuqTgnCVRg
4) Queuing theory: https://www.youtube.com/watch?v=xGkpXk-AnWU
5) Networking: https://www.youtube.com/watch?v=KG5b0xZ Ba8

## Pedagogy:

Chalk and talk, PPT, Group discussion, Seminar, Quiz, Assignment

## Course Designers:

2. Dr. R. Sakthikala, Assistant Professor, Department of Mathematics.
3. Mrs. M. Mohanapriya, Assistant Professor, Department of Mathematics.

	COURSE NAME	CATEGORY	L	T	P	CREDIT
COURSE   CODE   TH21A28	ALLIED STATISTICS FOR	BIOTECHNOLOGY	86	$\mathbf{4}$	-	5
	SEMESTER III					

## Preamble

- To present students the Basic concepts of statistics in terms of theory and practical.
- To enable the students to find the practical applications to the real world problems using EXCEL.


## Course Learning Outcomes

Upon the successful completion of the course, students will be able to

CLO   Number	CLO Statement	Knowledge   Level
CLO1	Outlining the basics of statistics	K1
CLO2	Understand the formulas and solving problems.	K2
CLO3	Apply the concepts to solve statistical problems	K3
CLO4	Analyze and evaluate the accuracy of common Statistical methods or model   in terms of excel.	K4

## Mapping with Programme Learning Outcomes

COS/POS	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	M	S	M	S
CLO2	M	S	M	S	M
CLO3	S	M	S	M	S
CLO4	M	S	M	S	S

S-Strong; M-Medium; L-Low

## Syllabus

## SEMESTER III

## STATISTICS FOR BIOTECHNOLOGY

Credit : 5
Total Hrs: 86
Subject Code: TH21A28

## Unit I

Functions of Statistics - Scope and Limitations. Classification \& Tabulation of data Diagrammatic and Graphical Presentation of data.

Diagrammatic representation of Data - Using Excel

## Unit II

Measures of Central tendency - Arithmetic Mean, Median, Mode, Geometric mean and Harmonic mean.

Problems Using Excel
Unit III
(17 Hrs)
Measures of dispersion: Range, Quartile deviation, mean deviation, standard deviation, and coefficient of variation. Simple problems related to above mentioned concepts using Excel.

## Unit IV

(18 Hrs)
Skewness - Correlation analysis: Introduction - Significance of the study of correlationcorrelation and causation - Types of correlation - Methods of studying correlation - Graphic method - Karl Pearson's coefficient of correlation - Coefficient of correlation and probable error Coefficient of determination - Properties of the coefficient of the correlation - Rank correlation coefficient - Features of Spearman's correlation coefficient.

Problems Using Excel
Unit $V$
Regression Analysis-introduction-uses-Regression lines-Regression Equations Simple linear regression model and coefficients of regression.

Problems Using Excel

## Text Book

S. No	Author	Title of the book	Publishers	Year of   Publication
1.	S P Gupta	Statistical Methods   Unit I:Chapter 1 pgNo 11-20,   Chapter5 pgNo 92-109, Chapter 6 pg   No. 128-145,146-153,165-176   Unit II:Chapter 7 pg No.179-   204,211-218,222-225,232-235   Unit III:Chapter 8 Pg No. 275-302   Unit IV:Chapter 9 \& 10 Pg No. 340-   342,390-416   Unit V: Chapter 11 Pg No.451-458	  Sons publishers	2004


Reference Books				
S. No Author Title of the book Publishers   1. P.A. Navnitham Year of   Publication    Statistics	Jai Publishers,   Trichy.	2003		
2.	V.K.Kapoor	Fundamentals of Applied Statistics	  Sons	2007

## MOOC learning

https://www.vertex42.com/edu/charts-and-graphs-in-excel.html
$>$ Graphs and charts
https://www.syncfusion.com/ebooks/statistics/descriptive-statistics
$>$ Measures of central tendency, Measures of dispersion
https://www.excel-easy.com/examples/regression.html
$>$ Regression

## E-Content

Diagrammatic and Graphical Method: https://www.youtube.com/watch?v=cOuUsZ9yNyk Measures of Central tendency:https://youtu.be/XrGM0OANzaE
Standard Deviation :https://youtu.be/O48XEfedSWs https://youtu.be/1VBjTw3A56M https://youtu.be/IEVHpXn-5dU
Quartile Deviation :https://youtu.be/C1gjdiCxQ2s
Mean Deviation :https://youtu.be/5TJ52gAjzOI
Range :https://youtu.be/7gRphRBstB0
Correlation :https://youtu.be/ai0ao7h0BWY https://youtu.be/CW8KthnL988 https://youtu.be/Xg0BJBwM2eQ https://youtu.be/iJcO1ZzX-Qo https://youtu.be/F_2GIheAbtI
Regression :https://youtu.be/i9zsF-JoYK0 https://youtu.be/xcUhf0Jqlek https://youtu.be/pT8M17HUh8c

## Note

Question paper setters to confine to the above text books only

## Pedagogy

Lecture by Chalk and talk, Power point presentation, E-content, Group discussion, Assignment, Quiz, Peer learning, Seminar.

## Course Designers

1. Dr. C. R. Parvathy, Associate Professor, Department of Mathematics
2. Mrs. S. Deepa, Assistant Professor, Department of Mathematics

	COURSE NAME	CATEGORY	L	T	P	CREDIT
COURSE	ALLIED - ADVANCED	THEORY	$\mathbf{8 6}$	$\mathbf{4}$	-	$\mathbf{5}$
CODE	STATISTICS FOR					

## Preamble

- To present students the Statistical concepts in analysing, interpretingterms of theory and practical.
- To enable the students to find the practical applications to a real-Life problem in various research fieldsusing EXCEL.


## Course Learning Outcomes

Upon the successful completion of the course, students will be able to

CLO   Number	CLO Statement	Knowledge   Level
CLO1	Outlining the Statistics Concepts	K1
CLO2	Understand the formulas and solving problems.	K2
CLO3	Apply the concepts to solve statistical problems	K3
CLO4	Analyze and evaluate the accuracy of common Statistical methods   or model in terms of excel.	K4

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	M	S	M	S
CLO2	M	S	M	S	M
CLO3	S	M	S	M	S
CLO4	M	S	M	S	S

S- Strong; M-Medium; L-Low

## Syllabus

## SEMESTER IV <br> ADVANCED STATISTICS FOR BIOTECHNOLOGY <br> Total Hrs: 86

Credit : 5
Subject Code: TH21A30

## UNIT I

18 Hrs
Tests of Hypothesis-Introduction-Procedure-Two Types of errors in testing of Hypothesis-Two-tailed and one-tailed tests of Hypothesis-Tests of significance for large Samples-Difference between small and large samples- Two tailed test for difference between the means of two samplesstandard error of the difference between two standard deviations.

## UNIT II

17Hrs
Tests of significance for small samples-student's t-Distribution properties of t-distribution- the t-table.Chi-square test and goodness of fit.

## UNIT III

17Hrs
F test - Analysis of variance: One-way classification-two-way classification. Simple problems.

## UNIT IV

## 17Hrs

Experimental Design- Introduction-Randomized Block Design-Latin squaresRandomized blocks Vs Latin Squares-Latin cubes.

## UNIT- V

17Hrs
Statistical Quality Control-introduction-control charts-types of control charts-setting up a control procedure- $\overline{\boldsymbol{X}}$ Chart- $\mathbf{R}$ chart.

Text Books							Title of the book	Publishers	Year of   Publication
S. No	Author	S P Gupta	Statistical Methods   Unit I: Chapter 3 Pg No. (906-913)   (925-923)   Unit II: Chapter3\&4 Pg No.(934-   937) (978-985)   Unit III:Chapter 5 Pg No.(1030-	  Sons publishers					
1043)   Unit IV:Chapter 6 Pg No.(1067-   1077)   Unit V: Chapter 7 Pg No.1079-1092									

## Books for Reference

S. No	Author	Title of the book	Publishers	Year of   Publication
1	V.K.Kapoor	Fundamentals of Mathmatical   Statistics	  Sons	2004
1.	V.K.Kapoor	Fundamentals of Applied Statistics	  Sons	2007

MOOC learning
Chi-Square and F Distribution - Statistics Using Excel Succinctly Ebook (syncfusion.com)
> Chi-Square Distribution
Analysis of Variance - Statistics Using Excel Succinctly Ebook (syncfusion.com)
$>$ ANOVA
Student's t Distribution - Statistics Using Excel Succinctly Ebook (syncfusion.com)
$>$ Student-t Distribution

## Note

- Question paper setters to confine to the above text books only


## Pedagogy

Lecture by Chalk and talk, Power point presentation, E-content, Group discussion, Assignment, Quiz, Peer learning, Seminar.

## Course Designers

1. Dr.C.R.Parvathy, Associate Professor, Department of Mathematics
2. Mrs.S.Deepa, Assistant Professor, Department of Mathematics
