MASTER OF SCIENCE IN CHEMISTRY CHOICE BASED CREDIT SYSTEM (CBCS) & LEARNING OUTCOMES-BASED CURRICULAM FRAMEWORK (LOCF) SYLLABUS & SCHEME OF EXAMINATION 2025 - 2027 BATCH - SEMESTER I

			e	/ SJ	S	rs	of on	Ex			
Sem	Course Code	Course Type Contact Hours Contact Hours		week Contact Hours Tutorial Hours		Duration of Examination	CA	ESE	Total	Credit	
	MCE2501	Inorganic Chemistry I (Inorganic and Solid State Chemistry)	CC	4	58	2	3	25	75	100	4
	MCE2502	Organic Chemistry I (Organic Reaction Mechanism & Stereochemistry)	CC	5	73	2	3	25	75	100	5
_	MCE2503	Physical Chemistry I (Classical & Statistical Thermodynamics)	CC	5	73	2	3	25	75	100	5
I	MCE2504	Analytical Techniques in Chemistry	CC	4	58	2	3	25	75	100	4
	MCE25P1	Organic Chemistry Practical I	CC	4	60	-	-	-	-	-	-
	MCE25P2	Inorganic Chemistry Practical I	CC	4	60	-	-	-	-	-	-
	MCE25P3	Physical Chemistry Practical I	CC	4	60	i	-	-	-	-	-
I-III	17MONL1	Online Course	ACC	-	-	-	-	-	-	-	-

CC - Core Courses ACC - Additional Credit Courses CA- Continuous Assessment ESE - End Semester Examination

Examination System

Pattern:

Semester system will be followed. A semester consists of a minimum of 90 working days excluding the days of conduct of ESE. There will be Continuous Internal Assessment (CA) to evaluate the performance of students in each course and the End Semester Examination will be held at the end of every semester.

Weightage assigned to various components of Continuous Internal Assessment

Theory

CIA Test : 5 marks (conducted for 45 marks after 50 days)
Model Exam : 7 marks (conducted for 75 marks after 85 days)

Seminar/Assignment/Quiz : 5 marks
Class Participation : 5 marks
Attendance : 3 marks
Total : 25 Marks

Practical

Lab Performance : 7 marks
Regularity : 5 marks
Model Exam : 10 marks
Attendance : 3 marks
Total : 25 marks

CA Question Paper Pattern and distribution of marks - (First 3 Units)

CA Question from each unit comprising of

One question with a weightage of 2 Marks : $2 \times 3 = 6$

One question with a weightage of 5 Marks (Internal Choice at the same CLO level) :5 x 3 = 15 One question with a weightage of 8 Marks (Internal Choice at the same CLO level) :8 x 3 = 24

Total:45 Marks

End Semester Examination – Question Paper Pattern and Distribution of Marks

Core Courses

ESE Question Paper Pattern: $5 \times 15 = 75$ Marks

Question from each unit comprising of

One question with a weightage of 2 Marks : 2 x 5=10 marks

One question with a weightage of 5 Marks (Internal Choice at the same CLO level): $5 \times 5 = 25$ One question with a weightage of 8 Marks (Internal Choice at the same CLO level): $8 \times 5 = 40$

Criteria for Attendance:

3 Marks

(Attendance 75% - 80% - 1 Mark, 81% - 90% - 2 Marks, 91% - 100% - 3 Marks)

CODE	COURSE TITLE	CATEGORY	L	Т	P	CREDIT
MCE2501	INORGANIC CHEMISTRY I	THEORY	58	2	-	4

To make the students to gain knowledge about structure and bonding in inorganic polymers; learn the theories of isopoly, heteropoly acids, anions and inorganic polymers; study the structural determination of inorganic crystals.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO	CLO Statement	Knowledge
Number		Level
CLO1	understand the concepts of inorganic polymers and ionic crystals	K2
CLO2	Extend the applications of inorganic compounds as rings, clusters, polyacids and solid state crystals	К3
CLO3	Assess the importance of inorganic compounds as polymeric structures/identifythe type and shape of ionic crystals	К3
CLO4	Distinguish and classify inorganic solids/rings/clusters and their defects	K4
CLO5	Determine the structures of inorganic polymers/crystals and interpret their structural differences	K5

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1	S	S	S	M	M	S	S
CLO2	S	S	S	M	M	S	S
CLO3	S	S	S	M	M	S	S
CLO4	S	S	S	M	S	S	S
CLO5	S	S	S	S	S	S	S

S-Strong, M- Medium

INORGANIC CHEMISTRY I (MCE2501)

(Inorganic Chemistry and Solid State Chemistry) (58 Hrs)

Unit – I (12 Hrs)

Inorganic Polymers-I

Chain – Catenation, Heterocatenation - Silicate minerals, orthosilicates, pyrosilicates, zeolites-Intercalationcompounds-preparation and properties.

Rings- Borazines- Preparation, properties and structure, Phosphazenes – Preparation, properties and structure.

Cages- PS cages, PO cages.

Unit – II (11 Hrs)

Inorganic Polymers- II

Introduction, general properties, glass transition temperature, classification. One dimensional conductors- Nitrides of sulphur - S4N4 - Preparation and structure, S4N $_3$ + - Preparation and structure, (SN)x -Preparation and structure. Silicon based polymers – Preparation, properties and types of silicones.

Unit – III (12 Hrs)

Isopoly and Heteropoly Acids and Anions

Introduction, polymerization of CrO $^{2-}$ anion, polymerization of molybdates, tungstates, vanadates, niobates and tantalates. Isopoly anions and isopoly acids of Mo $^{6+}$ and W $^{6+}$, isopolyvanadates, isopolyniobates and isopolytantalates. Heteropoly anions and heteropoly acids- different types, important reactions of iso and heteropoly anions.

Unit – IV (11 Hrs)

Solid State Chemistry – I

Structure- Types and classification of solids, distinction between crystalline and amorphous solids. Unit cell, Bravais lattice, classification of crystals based on bond type and packing in crystals.Imperfections in crystals - Types of defects, stoichiometric defects - Schottky and Frenkel.Non-stoichiometric defects - Metal excess and metal deficient, consequences of metal deficiency defects.

Unit - V (12Hrs)

Solid State Chemistry - II

Inorganic crystals - Coordination number, radius ratio rule and shapes of ionic crystals. Structures ofionic crystals - AX type: CsCl, ZnS (Zinc blende, Wurtzite), AX2 type: CaF2, TiO2, CdI2. X - ray diffraction - Powder Method, Single crystal methods, High temperature powder diffraction - Principle and uses.

Text Books:

S.No	Authors	Title	Publishers	Year
				& Edition
	SatyaPrakash,	Advanced Inorganic	S.Chand& Co.Ltd.	
1	G.D. Tuli, S.K. Basu,	Chemistry – Vol. I		2012
	R.D.Madan			
2	Gurdeep Raj	Advanced Inorganic	Krishna Prakasam	1999
		Chemistry – Volume I	Media (P) Ltd.	25 Edn
3	B.R. Puri, L.R.	Principles of Inorganic	Milestone	2007-2008
	Sharma, K.C. Khalia	Chemistry	Publisher	
	James E. Huheey,			2006
4	Ellen A. Keiter	Inorganic Chemistry	Pearson	4 Edn

Reference Books:

S.No	Authors	Title	Publishers	Year
				& Edition
1	F. Albert Cotton and	Advanced Inorganic	Wiley	1999
	Geoffrey Wilkinson	Chemistry	Interscience	6 Edn
2	Anthony R. West	Solid State Chemistry	Wiley India	2011
		and its		
		Application		
3	J.D. Lee	Concise Inorganic	Wiley India	2010
		Chemistry		

Pedagogy:

Lecture by chalk and talk, power point presentation, e-content, simulation, group discussion, assignment, quiz, seminar.

- 1. Dr. N.Muthulakshmi Andal
- 2. Dr. S. Charulatha

COURSE CODE	COURSE TITLE	CATEGORY	L	Т	P	CREDIT
MCE2502	ORGANIC CHEMISTRY I	THEORY	73	2	-	5

To enable the students to understand the concept of aromaticity, mechanism of substitution and elimination reactions in aliphatic and aromatic compounds & stereochemistry of organic compounds.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	identify and analyze the aromaticity, different types of mechanism	K2
CLO2	develop skills for identifying the kinetics and stereochemistry of thereactants and products	K2
CLO3	predict the stereochemistry and apply the mechanism for synthesizing organic compounds	К3
CLO4	analyze and compare the substitution & elimination reaction mechanism	K4
CLO5	employ the concepts to design new organic reactions with specific stereochemistry	K5

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1	S	S	S	M	M	S	S
CLO2	S	S	S	M	M	S	S
CLO3	S	S	S	M	M	S	S
CLO4	S	S	S	M	M	S	S
CLO5	S	S	S	M	M	S	S

S - Strong; M-Medium

ORGANIC CHEMISTRY I MCE2502

(Organic Reaction Mechanism and Stereochemistry) (73 Hrs)

Unit I (15Hrs)

Aromaticity

Criteria - Huckel's rule – Aromatic character in benzene, four, five, seven, eight membered rings- Aromaticity of benzenoid and heterocyclic compounds. Non-benzenoid aromatics-azulene, ferrocene, tropolone, sydnones and annulenes (synthesis not required) - Non aromatic and anti-aromatic systems. Aromatic compounds in biochemistry – phenyl alanine, tyrosine, tryptophan, purine, pyrimidine.

Reaction Mechanism

Types of reactions and mechanisms, Non kinetic methods- Product analysis, intermediate criteria (isolation, trapping and detection)- Isotopic labeling and cross over experiments-Stereochemical evidence. Kinetic methods- Mechanistic implications of rate law- Isotope effects. Kinetic and thermodynamic control of reactions - Hammonds postulates, Curtin Hammett Principle, linear free energy relationship- Hammett and Taft equations.

Unit II (14 Hrs)

Aliphatic Nucleophilic Substitution

The S_N1 , S_N2 & S_Ni mechanisms. The neighbouring group mechanism, neighbouring group participation by π & σ bonds, anchimeric assistance. Nucleophilic substitution at an allylic, aliphatic, trigonal and vinylic carbon. Reactivity effects of substrate structure, attacking nucleophile, leaving group and reaction medium, phase transfer catalysis, ambident nucleophiles and ambident substrates. Oxygen nucleophiles - Williamson reaction

Aromatic Nucleophilic Substitution

The S_NAr , S_N1 , Benzyne and SR_N1 Mechanisms. Reactivity – Effect of substrate structure, leaving group and attacking nucleophile. O & S nucleophiles - Bucherer reaction, Rosenmund reaction, Von Richter rearrangement.

Unit III (15 Hrs)

Aliphatic Electrophilic Substitution

Bimolecular mechanisms - S_E2 (front), S_E2 (back) and S_E^i . Unimolecular mechanism- S_E1 mechanism, Substitution accompanied by double bond shifts. Hydrogen electrophiles- hydrodehydrogenation, Halogen electrophiles - Halogenation of aldehydes, ketones and carboxylic acids, Nitrogen electrophiles - aliphatic diazonium coupling, Stork-enamine reaction, Sulphur electrophiles - sulphonation, Carbon electrophiles - acylation, alkylation.

Aromatic Electrophilic Substitution

Mechanism, orientation and reactivity, the ortho/para ratio. Reactions involving nitrogen electrophiles: nitration, nitrosation and diazonium coupling, ipso substitution. Sulphur electrophiles: Sulphonation, Jacobsen rearrangement. Carbon electrophiles: Alkylation, acylation, arylation reactions - Scholl reaction,

Gattermann reaction, Gattermann-Koch reaction, Reimer- Tiemann reaction, Kolbe- Schmidt reaction, Houben- Hoesch reaction, Vilsmeier- Haack reaction, Hoffmann-Martius reactions.

Unit IV (14 Hrs)

Elimination Reactions

E1, E2 and E1cB mechanism, orientation of double bond- structural and stereochemical factors governing eliminations - Hoffmann and Saytzeff rules, Bredt's rule. Effect of changes in the substrate, base, leaving group and medium in E1, E2 and E1cB reactions, syn-anti dichotomy, E1-E2-E1cB spectrum, Elimination vs substitution. Pyrolytic elimination- Chugaev reaction, Hoffmann degradation, Cope elimination.

Unit V (15 Hrs)

Stereochemistry

Optical isomerism: Concept of chirality, R, S - nomenclature of compounds having more than one chiral centres.

Topicity and Prochirality: Identification of Homotopic, Enantiotopic, Diastereotopic Ligands and Faces. Prochirality – pro R, pro S, Re and Si faces.

Asymmetric Synthesis - Cram's and Prelog's Rules, Felkin-Ahn modification, Chiral Auxiliaries - Evan Aldol Reaction, Chiral Reagents - Epoxidation (Sharpless' Reaction). Stereospecific and Stereoselective Reactions

Axial chirality - Optical isomerism of biphenyl, allenes and spirens. Planar chirality - Optical isomerism of ansa compounds and cyclophanes. Helicity - Optical isomerism of over- crowded molecules. Stereochemistry of sulphur and nitrogen compounds.

Geometrical Isomerism: Stereoisomerism of cyclic compounds (upto six membered ring) - Aldoximes and ketoximes.

Conformational Analysis: Configuration and conformation. Conformation of cyclic compounds - cyclohexane, decalins, perhydrophenanthrenes. Effect of conformation on reactivity.

Text Books:

S.No	Authors	Title	Publishers	Year & Edition
1	I.L. Finar	Organic Chemistry	Pearson	2009
		Vol I	Education	6 Edn
2	I.L. Finar	Organic Chemistry	Pearson	2011
		VolII	Education	5 Edn
3	Jagdamba Singh and	Advanced Organic	Pragati Prakasham	2010
	Yadav	Chemistry		6 Edn
4	Jerry March	Advanced Organic	Wiley	2010
		Chemistry	Publications	4 Edn
5	E. L Eliel	Stereochemistry of	Tata McGraw Hill	2004
		Carbon Compounds		30 Edn
6	T.W. Graham	Organic Chemistry	Wiley Publications	2008
	Solomons,			9 Edn
	Craig B. Fryhle			

Reference Books:

S.No	Authors	Title	Publishers	Year &
				Edition
1	R.K. Bansal	Organic Reaction	Tata McGrawHill	2006
		Mechanism	Publications	3 Edn
2	F. A. Carey and	Advanced Organic	Springer	2010
	Sundberg	Chemistry-Part A		2 Edn
3	F.A. Carey and	Advanced Organic	Springer	2007
	Sundberg	Chemistry-Part B		2 Edn
4	D. Nasipuri	Stereochemistry of	New Age	2008
		Organic Compounds	Publishers	2 Edn
5	Stanely H. Pine	Organic Chemistry	Tata MC Graw	2007
			Hill	5 Edn

Pedagogy:

Lecture by chalk and talk, power point presentation, e-content, group discussion, assignment, quiz, seminar.

- 1. Dr. G. Selvi
- 2. Dr. N. Shyamala Devi
- 3. Dr. P. Amutha

COURSE CODE	COURSE TITLE	CATEGORY	L	Т	P	CREDIT
MCE2503	PHYSICAL CHEMISTRY I	THEORY	73	2	-	5

To learn about classical and statistical thermodynamics, understand and apply the concept of fugacity, activity, chemical potential, third law of thermodynamics, probability, ensembles and distribution laws.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	understand the concept of fugacity, third law of thermodynamics, Maxwell – Boltzmann distribution law	K2
CLO2	interpret the physical significance of chemical potential and ensembles	K2
CLO3	calculate the molecular velocities based on Maxwell Boltzmann distribution law, fugacity and activity	K3
CLO4	apply thermodynamic concepts to evaluate the relationship between thermodynamic properties, translational, rotational, vibrational and electronic partition functions, Bose Einstein and Fermi-Dirac distribution laws	K4
CLO5	evaluate statistical thermodynamics to the properties of identical indistinguishable particles like electrons, Debye theory	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1	S	S	S	M	S	S	S
CLO2	S	S	S	M	S	S	S
CLO3	S	S	S	M	S	S	S
CLO4	S	S	M	M	M	S	S
CLO5	S	S	S	M	S	S	S

S - Strong; M-Medium

PHYSICAL CHEMISTRY PAPER I MCE2503

(Classical and Statistical Thermodynamics) (73Hrs)

Unit I (14Hrs)

Classical Thermodynamics

Chemical potential - Gibbs - Duhem equation - determination of partial molar quantities. Clausius - Clapeyron equation and its applications. Fugacity - definition - determination of fugacity of gases by graphical method, from equation of state, approximation method and generalized method - variation of fugacity with temperature. Fugacity and the standard state for non-ideal gases - fugacity coefficient, fugacity of mixture of non- ideal gases.

Activity and activity coefficient. Standard states - activity of solutions.

Unit II (14Hrs)

Third Law of Thermodynamics

Nernst heat theorem, third law of thermodynamics - need for third law, different forms of stating third law, thermodynamic quantities at absolute zero, probability and third law, statistical meaning of third law and apparent exceptions, negative absolute temperature.

Probability and Ensembles

Theorems of permutations, combinations and probability. Thermodynamic probability to molecular systems - states of maximum thermodynamic probability of systems involving energy levels.

Distinguishable and indistinguishable particles. Microstates and macrostates. Ensembles – definition - microcannonical, cannonical, grand cannonical and average ensembles.

Unit III (15 Hrs)

Maxwell Boltzmann Statistics

Stirling's approximation formula, Maxwell Boltzmann distribution law – assumptions, derivation for the system having non - degenerate and degenerate energy levels. Experimental verification of Maxwell's distribution of molecular velocities by Stern method. Limitations of Maxwell Boltzmann distribution law.

2D Velocity Distribution Law

Phase space, Maxwell's distribution law of molecular velocities, evaluation of alpha and beta in Boltzmann statistics. Evaluation of average velocity, root mean square velocity and most probable velocity from distribution law of molecular velocities, molecular velocities and energies of an ideal gas.

Unit IV (15Hrs)

Equipartition of Principle of Energy

Calculation of heat capacities of ideal gases - limitations.

Partition Functions Definition - explanation - molecular partition function - molar partition function - relationship between partition function and thermodynamic properties E, H, S, A, G, C_V and C_P. Translational partition functions - Sackur tetrode equation. Rotational partition functions - ortho/para hydrogen - vibrational partition functions - electronic partition functions. Evaluation of thermodynamic properties for mono and diatomic ideal gas molecules from partition functions.

Unit V (15 Hrs)

Quantum Statistics

Bose Einstein distribution law - derivation - entropy of boson - applications. Derivation of Planck's black body radiation law. Bose Einstein condensation. Helium at low temperature. Fermi - Dirac distribution law - derivation, entropy of fermions, applications - electron gas, fermi energy of free electrons at absolute zero. Heat capacity of free electrons in metals. Heat capacity - Einstein theory and Debye theory, Debye T-cube law, comparison of Maxwell Boltzmann, Bose Einstein, Fermi - Dirac statistics.

Text Books:

S.No	Authors	Title	Publishers	Year
				& Edition
1	Samuel Glassstone	Thermodynamics for	East West Press	2002
		Chemists		
2	M.C. Gupta	Statistical	Wiley Eastern	1990
		Thermodynamics	Publications	1 Edn
3	Ashley	Classical and	Pearson	2012
		Statistical	Education	
		Thermodynamics		

Reference Books:

S.No	Authors	Title	Publishers	Year
				& Edition
1	P.W. Aktins	Physical Chemistry	Oxford	1978,
			University	1 Edn
2	Gurdeep Raj	Advanced Physical	GOEL	2002,
		Chemistry	Publishing House	27 Edn
3	Peter Atkins	Elements of Physical	Oxford	2014,
	Julio de Paula	Chemistry	University	5 Edn
4	F.W. Sears	Thermodynamics,	Narosa	2013
	G.L. Salinger	Kinetic & Statistical	Publishing House	
		thermodynamics		
5	Frederick.T.	Chemical	W.H. Freeman	1974,
	Wall	Thermodynamics	& Company	3 Edn

Pedagogy:

Lecture by chalk and talk, power point presentation, e-content, numerical exercises, group discussion, assignment, quiz, seminar.

- 1. Dr. D.Nalini
- 2. Dr.N.Arunadevi

COURSE CODE	COURSE TITLE	CATEGORY	L	Т	P	CREDIT
MCE2504	ANALYTICAL TECHNIQUES IN CHEMISTRY	THEORY	58	2	-	4

To enable the students to analyze various chromatographic techniques, determine molecular configuration and conformation using ORD and CD, phase transitions and thermal properties using TGA, DTA, and DSC; understand the principles, instrumentation of electron-ion and atomic spectroscopy techniques like AAS, FES.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO	CLO Statement	Knowledge
Number		Level
CLO1	explain the working principles and theoretical concepts of	K2
	HPLC, GC, SFC, ORD, CD and spectroscopic techniques	
CLO2	analyze and compare different analytical methods in terms of	K3
	their accuracy, sensitivity, and suitability for various chemical	
	and industrial applications	
CLO3	interpret chromatograms, spectroscopic data, and thermal	K4
	analysis curves to identify chemical compounds and assess	
	their properties	
CLO4	apply AAS techniques to detect and quantify trace metals in	K4
	environmental, biological, and industrial samples.	
CLO5	analyze the advantages and limitations of different analytical	K4
	techniques	

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S
CLO5	S	S	S	S	S	S	S

S-Strong

Unit I (12Hrs)

Chromatography

High Pressure Liquid Chromatography (HPLC) - Introduction, characteristic features of HPLC, principle, column processes & band broadening, instrumentation and application.

Gas Chromatography (GC) - Introduction, principle, theory, instrumentation, evaluation of gaschromatogram, identification of chromatogram, plate theory and applications.

Super Critical Fluid Chromatography (SFC) - Characteristics of super critical fluids, comparison of SFC with HPLC & GLC and applications.

**Interpretation of chromatogram using caffeine, mixture of aminoacids, aflatoxin in milk, separation of phyto constituents.

Unit II (11 Hrs)

Optical Rotatory Dispersion & Circular Dichorism: Introduction, polarised light & Chiroptical properties - linearly & circularly polarized light, circular birefringence & circular dichroism. Instrumentation — Automatic recording spectropolarimeters (ORD), Circular dichrometer. ORD and CD curves — plain curves, cotton effect curves. Empirical & Semi empirical rules - Axial haloketone rule, Octant rule, Helicity rule, Lowe's rule. Application of Axial haloketone rule & Octant rule for ketones — absolute configuration, position of functional group, conformation, conformational mobility; Helicity in dienes, Lowe's rule for the configuration of allenes.

Unit III (12Hrs)

Thermoanalytical Methods

Thermogravimetric analysis & differential thermal analysis – Principle, various components with block diagram - TGA & DTA curves of CuSO₄.5H₂O, MgC₂O₄.H₂O & Ca(OOCCH₃)₂.H₂O Simultaneous DTA-TGA curves of SrCO₃ in air & CaC₂O₄.H₂O in air & CO₂. Factors affecting TGA & DTA curves. DSC - Principle, Instrumentation – Power compensated, Heat-flux, Modulated DSC instruments. Applications: glass transition temperatures, reaction kinetics, crystallinity and crystallization rate.

**Interpretation of thermogram using TGDTA (Tris(thiourea)copper (II) chloride, Potassium tris(oxalato)ferrate(III))

Unit - IV (12 Hrs)

Electron-Ion Spectroscopy

Introduction – general techniques in surface spectroscopy. Basic principles of electron spectroscopy – photoelectric effect and photoelectron spectroscopy (PES). Phototelelectron spectroscopy and Koopman's theorem. X-ray photoelectron spectroscopy – instrumentation & applications. Principles of Ultraviolet Photoelectron spectroscopy (UPS) and Auger Electron spectroscopy (AES).

**Interpretation of XPS of metal oxides (MnO₂, Co₃O₄ and NiO), metal hydroxides (Co(OH)₂, Ni(OH)₂) and organic compounds (graphenes and carbon nitrides).

Unit – V (11 Hrs)

Atomic Spectroscopy

Atomic Absorption Spectroscopy (AAS) – introduction, principle, procedure, preparation of samples, measurement of atomic absorption, sensitivity, calibration – methods, advantages and disadvantages of atomic absorption precision and accuracy. Flame Emission – relationship between atomic absorption and Flame Emission Spectroscopy (FES) – advantages of atomic absorption over flame emission. Line widths – instrumentation – sources – monochromators – filters – optical system and detectors - indicators. Flame – profiles – flame atomization – oxidants. Fuels – types of burners, interferences – cation and anion interferences, analytical applications.

**Determination of trace metal ions using AAS from industrial effluents (electroplating, paint and textile industries)

** Not for examination

Text Books:

S.	Authors	Title Publisher		Year &
No				Edition
1	E.L Eliel	Stereochemistry of Carbon	Tata McGraw	2004
		Compounds	Hill	30 Edn.
2	Dr. H. Kaur	Instrumental Methods of	Pragati	2008
		Chemical Analysis	Prakashan	4 Edn
3	Mahinder Singh	Analytical Chemistry-	Dominant	2003
		InstrumentalTechniques	Publishers &	1 Edn.
			Distributors	
			New Delhi	
4	B. K Sharma	Instrumental Methods of	Goel	2012
		ChemicalAnalysis	Publications	28 Edn.
5	H. H Willard,	Instrumental Methods of	CBS Publishers	1986
	L. L Merritt,	Analysis	& Distributors	7 Edn.
	J. A Dean,			
	F.A. Settle			
6	D.A. Skoog,	Instrumental Analysis	Cengage	2010
	F.J. Holler and S.R.		Learning	
	Crouch			

Reference Books:

S. No	Authors	Title	Publisher	Year & Edition
1.	S. M. Khopkar	Basic Concepts of	Wiley Eastern	1884
		Analytical Chemistry	Ltd	1 Edn.
2.	D. A Skoog,	Analytical	Saunders	1994 & 6
	F.J. Holler and D.	Chemistry- An	College	Edn.
	MWest	Introduction	Publications	
3.	M.S. Yadav	Instrumental Methods	Campus Book	2006 & 1
		of Chemical Analysis		Edn.

Pedagogy: Lecture by chalk and talk, power point presentation, e-content, Simulation, numerical exercises, group discussion, assignment, quiz, seminar.

- 1. Dr. E. Kayalvizhy
- 2. Dr. C. Nithya

COURSE CODE	COURSE TITLE	CATEGORY	L	Т	P	CREDIT
MCE25P1	ORGANIC CHEMISTRY PRACTICAL I	PRACTICAL	1	1	120	4

To enable the students to separate two components in an organic mixture, identify the separated components by qualitative tests, determine the boiling point / melting point of components and prepare organic compounds

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO	CLO Statement	Knowledge
Number		Level
CLO1	determine boiling point /melting point	K2
CLO2	identify the nature of the organic compounds	K2
CLO3	develop skills in the synthesis of organic compounds	K3
CLO4	separate organic mixtures by solvent extraction	K4
CLO5	analyse the food samples using HPLC	K5

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	M	S	S	S
CLO3	S	S	S	M	S	S	S
CLO4	S	S	S	S	S	S	S
CLO5	S	S	S	S	S	S	S

S - Strong; M-Medium

ORGANIC CHEMISTRY PRACTICAL I MCE25P1 (120 Hrs)

1. Qualitative Analysis:

Analysis of two component mixtures – Separation, identification of components and determination ofmelting point/ boiling point of the components.

2. One stage preparations and purification by recrystallization technique

- (i) m-dinitrobenzene from Nitrobenzene
- (ii) Resacetophenone from Resorcinol
- (iii) Tribromoaniline from Aniline
- (iv) Diazoaminobenzene from Aniline
- (v) Anthranilic acid from Pthalimide
- (vi) Methyl orange from sulphanilic acid

3. Characterization of any two of the above compounds by IR spectra

Note: A minimum of five organic mixtures should be done by each student.

4. Analysis of food samples using HPLC (Group Experiment)

Text Book: LAB MANUAL - Prepared by Faculty, Department of Chemistry, PSGR Krishnammal Collegefor Women

Reference books:

S. No	Authors	Title Publisher		Year & Edition
		Elementary Practical		
1	Arthur I. Vogel	Organic Chemistry	Pearson	2011
		(part 2) Qualitative	Education	2 Edn.
		OrganicAnalysis		
2	F.G. Mann &	Practical Organic	Pearson	2009
	B.C.Saunders	Chemistry	Education	4 Edn

Pedagogy: Demonstration and hands on practical

- 1. Dr. D. Nalini
- 2. Dr. E. Kayalvizhy
- 3. Dr. G. Sathya Priyadarshini

COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
MCE25P2	INORGANIC CHEMISTRY PRACTICAL I	PRACTICAL	-	-	120	4

To enable the students to separate the common and rare cations in a mixture, characterize two common and two less familiar cations, estimate quantitatively magnesium, nickel and zinc by complexometry and prepare inorganic complexes

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO	CLO Statement	Knowledge
Number		Level
CLO1	identify the common and rare cations	K2
CLO2	estimate the metal ions in complexes	K2
CLO3	interpret IR spectra of metal complexes	К3
CLO4	analyse and report cations in a mixture	K4
CLO5	develop skill in synthesizing inorganic complexes	K5

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S
CLO5	S	S	S	S	S	S	S

S - Strong; M-Medium

INORGANIC CHEMISTRY PRACTICAL I MCE25P2 (120 Hrs)

1. Qualitative Analysis

Qualitative Analysis employing semi micro methods & spot tests of mixtures of common cations ions of the following less familiar elements - Molybdenum, Thallium, Tungsten, Selenium, Tellurium, Cerium, Thorium, Titanium, Zirconium, Vanadium, Beryllium, Uranium & Lithium.

2. Titrimetry

Complexometric titrations using EDTA - Estimations of Magnesium, Nickel & Zinc.

3. Preparation of Inorganic Complexes

- i. Tris(thiourea)copper (I)chloride
- ii. Potassium tris(oxalato)ferrate(III)
- iii. Hexammine cobalt (III)chloride
- iv. Ammonium hexachlorostannate(IV)
- v. Tetramminecopper (II)sulphate
- 4. Characterization of any two of the above complexes by IR spectra
- 5. Preparation of CuO nanoparticles and its characterization using Nano Particle Track Analyzer (Group Experiment)

Text Books: LAB MANUAL - Prepared by Faculty, Department of Chemistry, PSGR Krishnammal Collegefor Women

Reference books:

S.	Authors	Title	Publisher	Year &
No				Edition
		Macro &Semimicro	Orient Long	1968
1	Arthur I.Vogel	Qualitative Inorganic	man'sLtd	1 Edn
		Analysis		
2	G.Palmer	Experimental	Cambridge	1964
		InorganicChemistry	University	3 Edn.
			Press	

Pedagogy: Demonstration and hands on practical

- 1. Dr. P. Kanchana
- 2. Dr. G.Selvi

COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
MCE25P3	PHYSICAL CHEMISTRY PRACTICAL I	PRACTICAL	ı		120	4

To make the students to understand the principle and to carry out the potentiometric titrations, determine the pH and pKa values of buffers and acids, determine the molecular weight of solutes and construct the phase diagram of two components systems.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	set up an electrode to prepare for a potentiometric titration	K 1
CLO2	infer the molecular weight of chemical compounds from Kf values by Rast micro method	K2
CLO3	interpret the strength of the solutions and Ka values by potentiometry	K3
CLO4	determine EMF of silver & copper electrode	
CLO5	construct and analyze Phase diagrams	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1	S	S	S	S	M	M	M
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	M	M	M	M
CLO4	S	S	S	M	S	S	S
CLO5	S	S	S	M	S	S	S

S- Strong; M-Medium

PHYSICAL CHEMISTRY PRACTICAL I MCE25P3 (120Hrs)

- 1. Molecular weight determination by Rast Micro Method
- 2. Phase study: Simple Eutectic System & Compound Formation
- 3. Determination of Transition Temperature of Salt Hydrate
- 4. Viscosity: Variation of viscosity of liquids with temperature
- 5. Electromotive Force:
 - (i) Determination of Standard Potentials (Cu, Ag)
 - (ii) Determination of pH & pKa values using Hydrogen & Quinhydrone electrodes
 - 6. Potentiometric Titrations:

Acid Base titrations

- i. Titration of HCl vs NaOH
- ii. Titration of mixture of acids against a strong base
- iii. Titration of CH₃COOH vs NaOH

Redox titrations

- iv. Titration of Ferrous ammonium sulphate against Potassium dichromate
- v. Titration of Potassium iodide against Potassium permanganate

Precipitation titrations

- vi. Estimation of KI by titration with AgNO₃ using KCl as standard.
- vii. Titration of mixture of halides against AgNO₃ solution
- 7. Determination of solubility product of a sparingly soluble salt (Concentration Cell & Chemical Cell)

Text Books:

LAB MANUAL-Prepared by Faculty, Department of Chemistry, PSGR Krishnammal College for Women

Reference books:

S.	Authors	Title Publisher		Year &
No				Edition
1	B.P. Levitt	Findlay's Practical	Longman	1973 & 9 Edn
		Physical Chemistry	Publications	
2	G. Palmer	Experimental	Cambridge	1964 & 1 Edn
		PhysicalChemistry	University Press	
3	B. Viswanathan&	Practical	Viva Books	2009 & 3 Edn
	P.S. Raghavan	Physical		
		Chemistry		

Pedagogy: Demonstration and hands on practicals

- 1. Dr. D. Nalini
- 2. Dr. E. Kayalvizhy
- 3. Dr .G. Sathya Priyadarshini