

DEPARTMENT OF CHEMISTRY

CHOICE BASED CREDIT SYSTEM & OUTCOME BASED EDUCATION SYLLABUS

MASTER OF CHEMISTRY

2023 - 2025

PROGRAMME OUTCOMES

After completion of the programme, the students will have the

- **PO1: ability** to function as responsible individuals with ethical values, accountable to the community
- **PO2: detailed** knowledge of the major areas of chemistry including a wide range of factual information and experimentally observed phenomena.
- **PO3: ability** to apply chemical concepts in new situations i.e., ability to predict physical andchemical properties by comparison with analogues.
- **PO4:** professional Skill to handle standard equipments and to analyze the data.
- **PO5:** ability to solve unseen chemical problems both qualitative and quantitative by interpretation and manipulation of experimental data.
- **PO6: ability** to present chemical research results to a technically literate audience by means of an oral presentation, scientific poster or a written report.

PO7: ability to assimilate in the course of different modules throughout the various years of study and to apply this when required.

PROGRAMME SPECIFIC OUTCOME

The students at the time of graduation will

- **PSO1: possess** skills in spectral, analytical, qualitative and quantitative techniques which will be useful in industry
- **PSO2: be** able to design a synthetic route for new compounds and transform innovative ideas into reality
- **PSO3: possess** skill in problem solving, critical thinking and analytical reasoning as applied to scientific problems.

DEPARTMENT OF CHEMISTRY

2023-2025

			ırs/	Total l	Hours		Max. Marks			
Sem	Subject Code	Title of the paper	Instruction hou week	Contact Hours	Tutorial	Duration of Examination	СА	ESE	Total	Credits
Ι	MCE2301	Paper – I Inorganic Chemistry and solid state chemistry	4	58	2	3	25	75	100	4
	MCE2302	Paper – II Organic Chemistry – I (Organic Reaction Mechanism & Stereochemistry)	5	73	2	3	25	75	100	5
	MCE2303	Paper – III Physical Chemistry – I (Classical & Statistical Thermodynamics)	5	73	2	3	25	75	100	5
	MCE2304	Paper – IV Analytical Techniques in Chemistry *	4	58	2	3	25	75	100	4
	MCE23P1	Practical – I Organic Chemistry Practical - I	4	60	-	-	-	-	-	-
	MCE23P2	Practical – II Inorganic Chemistry Practical –I	4	60	-	-	-	-	-	-
	MCE23P3	Practical – III Physical Chemistry Practical – I	4	60	-	-	-	-	-	-

				rs/	Total H	ours	_	Ma			
Sem	Subject Code	Title of the paper		Instruction hou week	Contact Hours	Tutorial Hours	Duration of Examination	CA	ESE	Total	Credits
п	MCE2305	Paper V Organic Chemistry-II (Reagents, Rearrangements, PericyclicReactions &Photochemistry)	CC	4	58	2	3	25	75	100	4
	MCE2306	Paper VI PhysicalChemistry- II (GroupTheory&QuantumChe mistry)	CC	4	58	2	3	25	75	100	4
	MCE2307	Paper VII-Spectroscopy	CC	3	43	2	3	25	75	100	3
II / III	MCE23CE	Coursera Course (Advanced Physical Chemistry)		3	45	-	-	100	-	100	3
	MCE2308 MCE21S1	Paper – VIII Coordination &Organometallic Chemistry Research Methodology	сс	4	58	2	3	25	75	100	4
	MCE23P1	Practical I Organic Chemistry Practical –I	CC	4	60	-	6	25	75	100	4
	MCE23P2	Practical II Inorganic ChemistryPractical – I	CC	4	60	-	6	25	75	100	4
	MCE23P3	PracticalIII Physical ChemistryPractical – I	CC	4	60	-	6	25	75	100	4
	MCP19A1	IDC-Clinical Microbiology Biochemistry	GE	4	60	-	3	-	100	100	4

SEMESTER-I

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
MCE2301	INORGANIC CHEMISTRY PAPER – I (Inorganic Chemistry and Solid State Chemistry)	THEORY	58	2	-	4

Preamble

- To make the students to
- gain knowledge about structure and bonding in inorganic chains and rings.
- understand the concepts of isopoly, heteropoly acids, anions and inorganic polymers.
- learn about inorganic crystals and structural determination methods.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	understand the concepts of inorganic polymers and ionic crystals	K1
CO2	extend the applications of inorganic compounds as rings, clusters, polyacids and solid state crystals	K2
CO2	assess the importance of inorganic compounds as polymeric structures/identify the type and shape of ionic crystals	K3
CO3	distinguish and classify inorganic solids/rings/clusters and their defects	K4
CO4	determine the structures of inorganic polymers/crystals and interpret their structural differences	K5

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Н	Н	Н	М	М	Н	Н
CO2	Н	Н	Н	М	М	Н	Н
CO3	Н	Н	Н	М	М	Н	Н
CO4	Н	Н	Н	М	Н	Н	Н
CO5	Н	Η	Н	Н	Н	Н	Н

INORGANIC CHEMISTRY PAPER – I(MCE2301)

(Inorganic chemistry and solid state chemistry) (58 Hrs)

Unit – I

Chains and Rings

Chain – Catenation. Heterocatenation - Silicate minerals, orthosilicates, pyrosilicates, zeolites-intercalation compounds-preparation and properties.

Rings – Borazines, phosphozenes – Preparation, properties and structure.

Unit – II

Isopoly and Heteropoly Acids and Anions

Introduction, polymerization of $\text{CrO}_4^{2^-}$ anion, polymerization of molybdates, tungstates, vanadates, niobates and tantalates. Isopoly anions and isopoly acids of Mo^{6+} and W^{6+} , isopolyvanadates, isopolyniobates and isopolytantalates. Heteropoly anions and heteropoly acids – different types, important reactions of iso and heteropoly anions.

Unit – III

Inorganic Polymers

Introduction, general properties, glass transition temperature, classification.Nitrides of sulphur - S_4N_4 , $S_4N_3^+$, $(SN)_x$ - One dimensional conductors-preparation and structure. Silicon based polymers – Preparation, properties and types of silicones.

Unit - IV

Solid State Chemistry – I

Structure – Types and classification of solids, distinction between crystalline and amorphous solids. Unit cell, Bravais lattice, classification of crystals based on bond type and packing in crystals.Imperfections in crystals – Types of defects, stoichiometric defects – Schottky and Frenkel.Non-stoichiometric defects – Metal excess and metal deficient, consequences of metal deficiency defects.

Unit – V

Solid State Chemistry – II

Inorganic crystals – Coordination number, radius ratio rule and shapes of ionic crystals. Structures of ionic crystals – AX type: CsCl, ZnS (Zinc blende, Wurtzite), AX_2 type: CaF₂, TiO₂, CdI₂. Experimental methods of crystal structure determination: X - ray diffraction, electron diffraction and neutron diffraction. Comparative study of the three diffraction methods.

(11 Hrs)

(12 Hrs)

(11 Hrs)

(12 Hrs)

(12Hrs)

Text Books:

S.No	Name of the Authors	Title of the Book	Publishers	Year of Publication
1	SatyaPrakash, G.D. Tuli, S.K. Basu, R.D. Madan	Advanced Inorganic Chemistry – Vol. I	S.Chand& Co. Ltd.	Reprint 2012
2	Gurdeep Raj	Advanced Inorganic Chemistry – Volume I	Krishna Prakasam Media (P) Ltd.	1999, 25 th Edition
3	B.R. Puri, L.R. Sharma, K.C. Khalia	Principles of Inorganic Chemistry	Milestone Publisher	Copyright 2007-2008
4	James E. Huheey, Ellen A. Keiter	Inorganic Chemistry	Pearson	Copyright 2006, 4 th Edition

Reference Books:

S.No	Name of the Authors	Title of the Book	Publishers	Year of Publication	
1	F. Albert Cotton and	Advanced Inorganic	Wiley	1000 6 th Edition	
1	Geoffrey Wilkinson	Chemistry	Interscience	1999, 0 Edition	
2	Anthony R. West	Solid State Chemistry and its	Wiley India	2011 Reprint	
2	Anthony R. West	Application	whey maia		
3		Concise Inorganic Wiley India		2010 Reprint	
3		Chemistry	whey mula		

Pedagogy:

Lecture by chalk and talk, power point presentation, e-content, Simulation, group discussion, assignment, quiz, seminar.

Course Designers:

Dr. P. Kanchana

Dr. S. Jone Kirubavathy

Question Paper Pattern End Semester Examination

SECTION	WORD LIMIT	MARKS	TOTAL
A - 5 x 2 Marks (No Choice)	One or Two Sentences	10	
B -5 x 5 Marks (Internal Choice at same CLO Level)	300	25	75
C – 5x 8 Marks (Internal Choice at same CLO Level)	600-800	40	

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
MCE2302	PAPER II – ORGANIC CHEMISTRY – I (Organic Reaction Mechanism &	THEORY	73	2	_	5
	Stereochemistry)	IIILOKI	15	2		5

To enable the students to

- gain knowledge about the aromaticity and organic reaction mechanism
- understand the conformation & stereochemistry of organic compounds
- learn the mechanism of substitution & elimination reactions in aliphatic & aromatic compounds

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	identify and analyze the aromaticity, different types of mechanism	K1
CO2	develop skills for identifying the kinetics and stereochemistry of the reactants and products	K2
CO3	predict the stereochemistry and apply the mechanism for synthesizing organic compounds	К3
CO4	analyze and compare the various reaction mechanism	K4
CO5	employ the concepts to design new organic reactions with specific stereochemistry	K5

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Н	Н	Н	М	М	Н	Н
CO2	Н	Н	Н	М	L	Н	Н
CO3	Н	Н	Н	М	L	Н	Н
CO4	Н	Н	Н	М	L	Н	Н
CO5	Н	Н	Н	М	М	Н	Н

PAPER-II- ORGANIC CHEMISTRY – I(MCE2302)

(Organic Reaction Mechanism and Stereochemistry)

Unit I

Aromaticity

Criteria - Huckel's rule – Aromatic character in benzene, four, five, seven, eight membered rings-Aromaticity of benzenoidsand heterocyclic compounds. Non benzenoid aromatics- azulene, ferrocene, tropolone, sydnones and annulenes (synthesis not required) - Non aromatic and anti-aromatic systems.

Reaction Mechanism

Types of reactions and mechanisms, Non kineticmethods- Product analysis, intermediate criteria (isolation, trapping and detection)- Isotopic labeling and cross over experiments- Stereochemical evidence. Kinetic methods- Mechanistic implications of rate law- Isotope effects. Kinetic and thermodynamic control of reactions - Hammonds postulates, linear free energy relationship- Hammett and Taft equations.

Unit II

(15 Hrs)

Aliphatic NucleophilicSubstitution

The $S_N 1$, $S_N 2$ S_N imechanisms. The neighbouring group mechanism, neighbouring group participation by π and σ bonds, anchimeric assistance.

Nucleophilic substitution at an allylic, aliphatic,trigonal and vinylic carbon. Reactivity effects of substrate structure, attacking nucleophile, leaving group and reaction medium, phase transfer catalysis, ambident nucleophiles and ambident substrates. Swain-Scott, Grunwald- Winstein relationship.

Aromatic Nucleophilic Substitution

The S_NAr , S_N1 , Benzyne and SR_N1 Mechanisms. Reactivity – Effect of substrate structure, leaving group and attacking nucleophile.

O and S – nucleophiles, Bucherer and Rosenmundreactions, Von Richter rearrangement.

Unit III

(15 Hrs)

Aliphatic Electrophilic Substitution

Bimolecular mechanisms – S_E2 (front), S_E2 (back) and S_Ei . Unimolecular mechanism- S_E1 mechanism, substitution by double bond shifts, other mechanisms – addition-elimination and cyclic mechanism.

Hydrogen electrophiles: hydro-dehydrogenation, keto-enoltautomerism.

electrophiles: Halogenation of aldehydes, acids. Halogen ketones and carboxylic Nitrogen electrophiles: aliphatic diazonium coupling. Sulphur electrophiles: sulphonation Carbon electrophiles: acylation, alkylation, Stork-enamine reaction.

(14Hrs)

(73 Hrs)

Aromatic Electrophilic Substitution

Mechanism, orientation and reactivity, the ortho/para ratio. Reactions involving nitrogen electrophiles: nitration, nitrosation and diazonium coupling, ipso substitution. Sulphur electrophiles: Sulphonation, Jacobsen rearrangement. Carbon electrophiles: Alkylation, acylation, arylation reactions -Scholl reaction, Gattermann reaction, Gattermann-Koch reaction, Reimer- Tiemann reaction, Kolbe-Schmidt reaction, Houben-Hoesch reaction, Vilsmeier-Haack reaction, Hoffmann-Martius reactions.

Unit IV

Elimination Reactions

E1, E2 and E1cB mechanism, orientation of double bond- structural and stereochemical factors governing eliminations - Hoffmann and Saytzeff rules, Bredt's rule - Effect of changes in the substrate, base, leaving group and medium in E1, E2 and E1CB reactions- Elimination vs substitution- Pyrolytic elimination- Chugaev reaction- Hoffmann degradation- Cope elimination.

Unit V

Stereochemistry

Optical isomerism - Concept of chirality- Stereochemistry of sulphur and nitrogen compounds prochirality - Enantiotopic and diastereotopic ligands and faces- Stereospecific and Concept of stereoselective reactions. R, S - nomenclature of compounds having one and more than one chiral centres-Axial chirality- (Optical isomerism of biphenyl, allenes and spirens)- Planar chirality (Optical isomerism of ansa compounds and cyclophanes)- Helicity (Optical isomerism of over- crowded molecules)

Geometrical Isomerism

E-Z Notation- Determination of configuration of geometrical isomerism- Stereoisomerism of cyclic compounds (upto six membered ring) - Aldoximes and ketoximes.

Conformational Analysis

Configuration and conformation- Conformation of acyclic compounds- cyclohexane, decalins, perhydrophenanthrenes and carbohydrates. Effect of conformation on reactivity, Curtin Hammett Principle. **Text Books:**

S.No	Name of the Authors	Title of the Book	Publishers	Year of
				Publication
1	I.L. Finar	Organic Chemistry Vol I	Pearson	reprint 2009,6 th
			Education	Edition
2	I.L. Finar	Organic Chemistry Vol	Pearson	reprint 2011,5 th
		II	Education	Edition
3	Jagdamba Singh and	Advanced Organic	PragatiPrakasham	2010, 6 th Edition
	Yadav	Chemistry		
4	Jerry March	Advanced Organic	Wiley	reprint 2010,4 th
		Chemistry	Publications	Edition.

(14 Hrs)

(15 Hrs)

5	Stanely H. Pine	Organic Chemistry	Tata MC Graw Hill	2007, 5 th Edition
6	Jie Jack Li	Name Reactions	Springer	2004, 2 nd Edition

Reference Books:

S.No	Name of the Authors	Title of the Book		Publishers		Year of		
						Pub	lication	
1	R.K. Bansal	Organic	Reaction	Tata	McGraw	reprint	2006, 3 rd	
		Mechanism		Hill Publications		Edition		
2	F.	Advanced Organic Springer		er	2010			
	A.CareyandSundberg	Chemistry-Part	A					
3	F.	Advanced Organic		Springer		2007		
	A.CareyandSundberg	Chemistry-Part						
4	D .Nasipuri	Stereochemistr	y of	New	Age	$2008, 2^{1}$	nd Edition	
		Organic Comp	ounds	Publish	ners			

Pedagogy:

Lecture by chalk and talk, power point presentation, e-content, group discussion, assignment, quiz, seminar.

Course Designers:

- 1. Dr. G. Selvi
- 2. Dr.N.Shyamala Devi
- 3. Dr. P. Amutha

Question Paper Pattern End Semester Examination

SECTION	WORD LIMIT	MARKS	TOTAL
A - 5 x 2 Marks (No Choice)	One or Two Sentences	10	
B -5 x 5 Marks (Internal Choice at same CLO Level)	300	25	75
C – 5x 8 Marks (Internal Choice at same CLO Level)	600-800	40	

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
MCE2303	Paper-III-PHYSICAL CHEMISTRY PAPER – I	THEORY	73	2	_	5
	(Classical & Statistical Thermodynamics)					

To enable the students to

- understand and apply the concept of fugacity, activity and chemical potential.
- acquire knowledge on third law of thermodynamics and probability and ensembles.
- gain knowledge about the distribution laws (classical and statistical) and their applications

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	understand the concept of fugacity, Third law of Thermodynamics, Maxwell – Boltzmann distribution law	K1
CO2	interpret the physical significance of chemical potential, Ensembles	K2
CO3	calculate the molecular velocities based on Maxwell Boltzmann distribution law, fugacity and activity	К3
CO4	apply thermodynamic concepts to evaluate the relationship between thermodynamic properties, Fermi-Dirac distribution law	K4
CO5	evaluate statistical thermodynamics to the properties of identical indistinguishable particles like electrons, Debye theory, Partition Functions of mono & diatomic ideal gas molecules.	K5

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Н	Н	Н	М	Н	Н	Н
CO2	Н	Н	Н	М	Н	Н	Н
CO3	Н	Н	Н	М	Н	Н	Н
CO4	Н	Н	М	М	М	Н	Н
CO5	Н	Н	Н	М	Н	Н	Η

PAPER III- PHYSICAL CHEMISTRY PAPER – I (MCE2303)

(Classical and Statistical Thermodynamics)

Unit I

Classical Thermodynamics

Concept of chemical potential – Fugacity- definition- determination of fugacity of gases by graphical method, from equation of state, approximation method and generalized method- variation of fugacity with temperature. Fugacity and the standard state for non-ideal gases- Fugacity coefficient, fugacity of mixture of non- ideal gases.

Activity and activity coefficient. Standard states – activity of solutions. Determination of activity of solute and solvent by freezing point method.

Unit II

Third Law of Thermodynamics

Nernst heat theorem, third law of thermodynamics - Need for third law, different forms of stating third law, thermodynamic quantities at absolute zero, probability and third law, statistical meaning of third law and apparent exceptions, negative absolute temperature.

Probability and Ensembles

Theorems of permutations, combinations and probability. Thermodynamic probability to molecular systems- States of maximum thermodynamic probability of systems involving energy levels.

Distinguishable and indistinguishable particles.Microstates and macrostates. Ensembles – definitionmicrocannonical, cannonical and grand cannonical ensembles.

Unit III

Maxwell Boltzmann Statistics

Stirling's approximation formula, Maxwell Boltzmann distribution law – assumptions, derivation for the system having non- degenerate and degenerate energy levels. Experimental verification of Maxwell's distribution of molecular velocities by Stern method.Limitations of Maxwell Boltzmann distribution law.

2D Velocity Distribution Law

Maxwell's distribution law of molecular velocities, evaluation of alpha and beta in Boltzmann statistics. Evaluation of average velocity, root mean square velocity and most probable velocity from distribution law of molecular velocities, molecular velocities and energies of an ideal gas.

(14Hrs)

(73Hrs)

(14Hrs)

(15 Hrs)

Unit IV

Equipartition of Principle of Energy

Calculation of heat capacities of ideal gases- limitations.

Partition Functions

Definition- explanation- molecular partition function- molar partition function- Relationship between partition function and thermodynamic properties E, H, S, A, G, C_V and C_P . Translational partition functions- Sackur- Tetrode equation. Rotational partition functions – ortho/para hydrogen- vibrational partition functions- electronic partition functions. Evaluation of thermodynamic properties for mono and diatomic ideal gas molecules from partition functions.

Unit V

Ouantum Statistics

Bose Einstein distribution law- derivation – entropy of boson applications. Derivation of Planck's black body radiation law. Bose Einstein condensation.Helium at low temperature Fermi – Dirac distribution law- derivation, entropy of fermions, Applications - electron gas, fermi energy of free electrons at absolute zero.Heat capacity of free electrons in metals. Heat capacity – Einstein theory and Debye theory, Debye T-cube law, comparison of Maxwell Boltzmann, Bose Einstein, Fermi - Dirac statistics

Text Books:

S.No	Name of the Authors	Title of the Book Publisher		Year of	
				Publication	
1	Samuel Glassstone	Thermodynamics for	East West Press	Reprint 2002	
		Chemists			
2	M.C. Gupta	Statistical	Wiley Eastern	1990, 1 st	
		Thermodynamics	Publications	Edition	
3	Ashley	Classical and Statistical	Pearson	2012	
		Thermodynamics	Education		

Reference Books:

S.No	Name of the	Title of the Book	Publishers	Year of
	Authors			Publication
1	P.W. Aktins	Physical Chemistry	Oxford	1978,
			University	1 st Edition
				(Reprint 2005)
2	Gurdeep Raj	Advanced Physical	GOEL Publishing	2002, 27 th Edition
		Chemistry	House	
3	Peter Atkins &	Elements of Physical	Oxford	2 nd Print 2014,5 th
	Julio de Paula	Chemistry	University	Edition
4	F.W. Sears and	Thermodynamics,	Narosa	Reprint 2013
	G.L. Salinger	Kinetic & Statistical	Publishing House	
		thermodynamics		
5	Frederick.T. Wall	Chemical	W.H. Freeman &	1974, 3 rd Edition.
		Thermodynamics	Company	

(15Hrs)

(15 Hrs)

Pedagogy:

Lecture by chalk and talk, power point presentation, e-content, numerical exercises, group discussion, assignment, quiz, seminar.

Course Designers:

- 1. Dr. D.Nalini
- 2. Dr.N.Arunadevi
- 3. Dr. Sowmya Ramkumar

Question PaperPattern End Semester Examination

SECTION	WORD LIMIT	MARKS	TOTAL
A - 5 x 2 Marks (No Choice)	One or Two Sentences	10	
B -5 x 5 Marks (Internal Choice at same CLO Level)	300	25	75
C – 5x 8 Marks (Internal Choice at same CLO Level)	600-800	40	

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	P	CREDIT
MCE2304	PAPER IV- ANALYTICAL	THEODY	50	2		4
	TECHNIQUES IN CHEMISTRY	INEUKI	20	4	-	4

To enable the students to

- understand and analyze various types of chromatographic techniques.
- acquire knowledge about the configuration and confirmation of organic molecules by ORD and CD
- gain knowledge about the different thermal and electro analytical techniques.
- understand the principle of atomic absorption and Emission spectroscopy

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	understanding the principles of various analytical techniques to identify the components	K 1
CO2	explain the principle behind chromatographic techniques, ORD, CD, TGA, coulometry, polarography, CV and Atomic Absorption Spectrophotometer	K2
CO3	relate the concepts of chromatographic, analytical & spectral techniques in characterization/purification of different compounds	К3
CO4	analyze the process of column in chromatography, different thermal analytical methods and explain the instrumentation of electro analytical, atomic spectroscopy	K4
CO5	appraise the significance of various analytical and their applications	K5

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Н	Н	Н	Н	Н	Н	Η
CO2	Н	Н	Н	М	Н	Н	Η
CO3	Н	Н	Н	Н	Н	Н	Η
CO4	Н	Н	Н	Н	Н	Н	Н
CO5	Н	Н	Н	Н	Н	Н	Η

PAPER IV– ANALYTICAL TECHNIQUES IN CHEMISTRY (MCE2304) (58Hrs)

Unit I

Chromatography

High Pressure Liquid Chromatography (HPLC)-Introduction, Characteristic features of HPLC, Principle, column processes & band broadening, instrumentation, Applications of HPLC.

Gas Chromatography (GC) - Introduction, Principle, Theory, instrumentation, Evaluation of gas chromatogram, identification of chromatogram, plate theory for GC, Applications.

Super Critical Fluid Chromatography (SFC) - Characteristics of super critical fluids, Comparison of SFC with HPLC & GLC, Applications of SFC

Unit II

Analytical Techniques

ORD & CD – Principle, instrumentation - Visual Polarimetry (for ORD) types of ORD curves, axial haloketone rule & octant rule – Applications to determine the configuration & conformation of simple monocyclic & bicyclic ketones.

Unit III

Thermoanalytical Methods

Principle - Thermogravimetric analysis & differential thermal analysis- discussion of various components with block diagram- TGA & DTA curves of CuSO₄.5H₂O, MgC₂O₄.H₂O & Ca(OOCCH₃)₂.H₂O – Simultaneous DTA-TGA curves of SrCO₃ in air & CaC₂O₄.H₂O in air & CO₂. Factors affecting TGA & DTA curves.UPS & ESCA- Basic principles, sources, instrumentation, applications.DSC-Principle, Instrumentation and application.

Unit – IV

Electro Analytical Techniques

Coulometry: Introduction, Types of colometric methods, Types of coulometers $-O_2$ -H₂, Ag & I₂ coulometer, coulometric titrations- Internal and external generation of titrants, applications.

Polarography: Introduction, apparatus, working, polarographic measurements, interpretation of polarographic waves, equation for polarographic wave, half wave potential, DME - Applications.

Cyclic Voltammetry: Principle, Normal Pulse Voltammetry (NPV), Differential Pulse Voltammetry (DPV) Unit – V (11 Hrs)

Atomic Spectroscopy

Sources of atomic and emission absorption spectra. Atomic spectroscopy based on flame atomization - flame atomizers, properties of flames, quantitative analysis. Flame Atomic Absorption Spectroscopy - Introduction, sources, instrumentation. Flame emission spectroscopy - Introduction, instrumentation.

(12 Hrs)

(12Hrs)

(11 Hrs)

(**12Hrs**)

Text Books:

S.No	Name of the	Title of the Book	Publishers	Year of
	Authors			Publication
1.	E.L Eliel	Stereochemistry of Carbon	Tata McGraw	2004, 30 th
		Compounds	Hill	Edition
2.	Dr. H. Kaur	Instrumental Methods of Chemical	PragatiPrakashan	$2008, 4^{\text{th}}$
		Analysis	_	Edition
3.	Mahinder	Analytical Chemistry- Instrumental	Dominant	2003, 1 st
	Singh	Techniques	Publishers &	Edition
			Distributors	
			NewDelhi	
4.	B. K Sharma	Instrumental Methods of Chemical	Goel	1996, 15 th
		Analysis	Publications	Edition
5.	H. H Willard,	Instrumental Methods of Analysis	CBS Publishers	1986, 7 th
	L. L Merritt.		& Distributors	Edition
	and J. A Dean,			
	F.A. Settle			

Reference Books:

S.No	Name of the Authors	Title of the Book	Publishers	Year of
				Publication
1.	L.I.Antropov	Theoretical	MIR publishers,	1972, 1 st Edition
		electrochemistry	Moscow	
2.	S. M. Khopkar	Basic Concepts of	Wiley Eastern	1884, First
		Analytical Chemistry	Ltd	Edition
3.	D. A Skoog,	Analytical Chemistry-	Saunders	1994, 6 th Edition
	F.J.Holler and D. M	An Introduction	College	
	West		Publications	
4.	M.S.Yadav	Instrumental Methods of	Campus Book	2006, 1 St Edition
		Chemical Analysis		

Pedagogy:Lecture by chalk and talk, power point presentation, e-content, Simulation, numerical exercises,

group discussion, assignment, quiz, seminar.

Course Designers:

- 1. Dr. E. Kayalvizhy
- 2. Dr. G. Sathya Priyadarshini

End Semester Examination							
SECTION	WORD LIMIT	MARKS	TOTAL				
A - 5 x 2 Marks (No Choice)	One or Two Sentences	10					
B -5 x 5 Marks (Internal Choice at same CLO Level)	300	25	75				
C – 5x 8 Marks (Internal Choice at same CLO Level)	600-800	40					

Question Paper Pattern End Semester Examination

Course Number	Course Name	Category	L	T	Р	Credit
MCE23P1	PRACTICAL I - ORGANIC CHEMISTRY PRACTICAL – I	PRACTICAL	I	-	120	4

To enable the students to

- separate two components in an organic mixture
- identify the separated components by qualitative tests
- determine the boiling point / melting point of components
- prepare organic compounds

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	determine boiling point /melting point	K1
CO2	identify the nature of the organic compounds	K2
CO3	develop skills in the synthesis of organic compounds	К3
CO4	separate organic mixtures by solvent extraction	K4

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Η	Η	Η	Η	Η	Η	Η
CO2	Η	Η	Η	L	Η	Η	Η
CO3	Η	Η	Η	L	Η	Η	Η
CO4	Н	Η	Η	Н	Η	Η	Η

PRACTICAL I - ORGANIC CHEMISTRY PRACTICAL – I (MCE23P1) (120 Hrs)

1.Qualitative Analysis:

Analysis of two component mixtures – Separation, identification of components and determination of melting point/ boiling point of the components.

2. One stage preparations and purification by recrystallization technique

- (i) m-dinitrobenzene from Nitrobenzene
- (ii) Resacetophenone from Resorcinol
- (iii) Tribromoaniline from Aniline
- (iv) Diazoaminobenzene from Aniline
- (v) Anthranilic acid from Pthalimide
- (vi) Methyl orange from sulphanilic acid

3. Characterization of any two of the above compounds by IR spectra

Note: A minimum of five organic mixtures should be done by each student.

Text Book: LAB MANUAL - Prepared by Faculty, Department of Chemistry, PSGR Krishnammal College for Women

Reference books:

S.No	Name of the Authors	Title of the Book	Publishers	Year of Publication	
1	Arthur I. Vogel	Elementary Practical Organic Chemistry (part 2)Qualitative Organic Analysis	Pearson Education	2011, 2 nd Edition.	
2	F.G. Mann & B.C. Saunders	Practical Organic Chemistry	Pearson Education	2009, 4 th Edition	

Pedagogy: Demonstration and hands on practicals

Course Designers:

- 1. Dr.D.Nalini
- 2. Dr.E.Kayalvizhy
- 3. Dr.G.Sathya Priyadarshini

Course Number	Course Name	Category	L	Т	Р	Credit
MCE23P2	PRACTICAL II – INORGANIC CHEMISTRY PRACTICAL-I	PRACTICAL	-	-	120	4

To enable the students to

- separate the common and rare cations in a mixture
- characterize two common and two less familiar cations
- estimate quantitatively magnesium, nickel and zinc by complexometry
- prepare inorganic complexes

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	identify the common and rare cations	K1
CO2	estimate the metal ions in complexes	K2
CO3	interpret IR spectra of metal complexes	K3
CO4	analyse and report cations in a mixture	K4
CO5	develop skill in synthesizing inorganic complexes	K5

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Н	Н	Н	Н	Н	Н	Н
CO2	Н	Н	Н	Н	Н	Н	Н
CO3	Н	Н	Н	Н	Н	Н	Н
CO4	Н	Н	Н	Н	Н	Н	Н
CO5	Н	Н	Н	Н	Н	Н	Н

PRACTICAL II - INORGANIC CHEMISTRY PRACTICAL – I (MCE23P2) (120 Hrs)

1.Qualitative Analysis

Qualitative Analysis employing semi micro methods & spot tests of mixtures of common cations & ions of the following less familiar elements - Molybdenum , Thallium, Tungsten, Selenium, Tellurium, Cerium, Thorium, Titanium, Zirconium, Vanadium, Beryllium, Uranium & Lithium.

2. Titrimetry

Complexometric titrations using EDTA - Estimations of Magnesium, Nickel & Zinc.

3. Preparation of Inorganic Complexes

- i. Tris(thiourea)copper (I)chloride
- ii. Potassium tris(oxalato)ferrate(III)
- iii. Hexammine cobalt(III)chloride
- iv. Ammonium hexachlorostannate(IV)
- v. Tetramminecopper(II)sulphate

4. Characterization of any two of the above complexes by IR spectra

Text Books:LAB MANUAL - Prepared by Faculty, Department of Chemistry, PSGRKrishnammal College for Women

Reference books:

S.No	Name of the Authors	Title of the Book	Publishers	Year of Publication
1	Arthur I.Vogel	Macro &Semimicro Qualitative Inorganic Analysis	Orient Long man's Ltd	1968, 1 st Edition
2	G.Palmer	Experimental Inorganic Chemistry	Cambridge University Press	1964, 3 rd Edition.

Pedagogy: Demonstration and hands on practicals

Course Contents and Lecture Schedule Course Designers:

- 1. Dr.P. Kanchana
- 2. Dr.G.Selvi

Course Number	Course Name	Category	L	Т	Р	Credit
MCE23P3	PRACTICAL III - PHYSICAL CHEMISTRY PRACTICAL - I	PRACTICAL	-	I	120	4

To make the students to

- understand the principle and to carry out the potentiometric titrations.
- determine the pH and pKa values of buffers and acids
- determine the molecular weight of solutes.
- construct the Phase diagram of two components systems.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	set up an electrode to prepare for a potentiometric titration	K1
CO2	infer the molecular weight of chemical compounds from $K_{\rm f}$ values by Rast micro method	K2
CO3	interpret the strength of the solutions and Ka values by potentiometry	K3
CO4	construct and analyze Phase diagrams	K4

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Н	Н	Н	Н	М	М	М
CO2	Н	Н	Н	Н	Н	Н	Н
CO3	Н	Н	Н	М	М	М	М
CO4	Н	Н	Н	М	Н	Н	Н

PRACTICAL III - PHYSICAL CHEMISTRY PRACTICAL - I (MCE23P3)(120Hrs)

- 1. Molecular weight determination by Rast Micro Method
- 2. Phase study: Simple Eutectic System & Compound Formation
- 3. Phase Study: System with Compound Formation
- 4. Determination of Transition Temperature of Salt Hydrate
- 5. Viscosity: Variation of viscosity of liquids with temperature
- 6. Electromotive Force:
 - (i) Determination of Standard Potentials (Cu, Zn, Ag)
 - (ii) Evaluation of Thermodynamic Quantities from EMF Data (Daniel Cell)
 - (iii)Determination of pH & pKa values using Hydrogen &Quinhydrone electrodes
- 7. Potentiometric Titrations:
 - i. Titration of HCl vsNaOH
 - ii. Titration of mixture of acids against a strong base
 - iii. Titration of CH₃COOH vsNaOH
 - iv. Redox titrations:

(a) Titration of Ferrous ammonium sulphate against Potassium dichromate

- (b) Titration of Potassium iodide against Potassium permanganate
- v. Determination of solubility product of a sparingly soluble salt (Concentration Cell & Chemical Cell)
- vi. Precipitation titrations:

(a) Estimation of KI by titration with AgNO3 using KCl as standard

(b) Titration of mixture of halides against AgNO₃ solution

Text Books:

LAB MANUAL-Prepared by Faculty, Department of Chemistry, PSGR Krishnammal College for Women **Reference books:**

S.No	Name of the	Title of the Book	Publishers	Year of	
	Authors			Publication	
1	PP Lovitt	Findlay's Practical	Longman	1073 O th Edition	
I D.P. Leviu		Physical Chemistry	Publications	1975, 9 Euluon	
2	C Dalmar	Experimental Physical	Cambridge	1064 1 st Edition	
2	G.Faimer	Chemistry	University Press	1904, 1 Euliioii	
2	B. Viswanathan&	Practical Physical	Vive Pools	2000 2 rd Edition	
5	P.S. Raghavan	Chemistry	VIVA DOOKS	2009,5 Edition	

Pedagogy: Demonstration and hands on practicals

Course Designers

- 1. Dr.D.Nalini
- 2. Dr.E.Kayalvizhi
- 3. Dr .G.Sathyapriyadarshini

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
MCE2305	PAPER V-ORGANIC CHEMISTRY –II	THEORY	58	2	-	4

To enable the students to

- understand the applications of reagents in organic synthesis
- gain knowledge about the mechanism of molecular rearrangements
- learn the stereochemistry of pericyclic reactions by correlation diagram, FMO and PMO methods
- understand the principles of photochemistry and Retro Synthesis and their applications

Course Outcomes

On the successful completion of the course, students will be able to

CLO	CO Statement	Knowledge
Number		Level
CLO1	understand the use of an organic reagents in organic synthesis, types of	
	rearrangements and pericyclic reactions, requirements for reterosynthesis,	K1
	nature of interaction of an organic compound with light	
CLO2	recognize and analyze the mechanisms of various molecular rearrangements	
	and photoreactions, classify pericyclic reactions and molecular systems,	K2
	recognize a specific reagent for an organic conversion	
CLO3	interpret the product formation in any pericyclic reactions based on the	
	stereochemical methods, interpret a mechanism for a photochemical reaction,	K3
	identify the various products obtained in a rearrangement reaction	
CLO4	apply retro synthesis to design synthetic routes for synthesis of organic	
	compounds, Woodward-Hoffmann rules to explain pericyclic reaction, justify	KA.
	the formation of rearranged product, construct a correlation diagram to predict	Κ4
	the feasibility of a pericyclic reaction	
CLO5	appreciate the role of organic reagents, rearrangement reactions, various	
	pericyclic reactions, protecting groups and photochemistry and their	K5
	significant applications in research	

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Η	Н	Η	Μ	Η	Η	Η
CO2	Η	Н	Н	Μ	Н	Н	Н
CO3	Η	Н	Н	Μ	Н	Н	Н
CO4	Η	Н	Н	Μ	Н	Н	Н
CO5	Η	Н	Η	Μ	Η	Η	Н

PAPER – V -ORGANIC CHEMISTRY –II (MCE2305)

(Reagents, Rearrangements, Pericyclic Reactions, Retro Synthesis & Photochemistry) (58 Hrs)

Unit I

Reagents in Organic Synthesis

Use of the following reagents in organic synthesis and functional group transformations - complex hydrides. lithium dimethyl cuprate (LDC), lithium diisopropyl amide metal dicyclohexylcarbodimide (DCC), 1,3-dithiane, tri-n-butyl tin hydride,Osmium tetroxide, DDQ, SeO₂

Unit II

Molecular Rearrangements

Migration to carbonyl carbon: Neber rearrangement, Rearrangement of electron deficient nitrogen and oxygen: Dienone - Phenol, Favorskii, Fries, Wolf, Benzidine, Steven's, Demzanov, Sommlet-Hauser, Chapmann and Wallach rearrangements.

Unit III

Pericyclic Reactions

Molecular orbital symmetry. Classification of pericyclic reactions. Electrocyclic reactions – 4n and 4n+2 systems, Woodward –Hoffmann rules, Correlation diagram, FMO and PMO approach [1, 3-dienes and 1, 3, 5-trienes]

Cycloadditions

Antarafacial and suprafacial additions, 4n and 4n+2 systems, 1, 3- dipolar addition, Diel's Alder reaction.

Sigmatropic Rearrangements

Suprafacial and antarafacial shifts of hydrogen, Cope, Claisen and di- π methane rearrangement.

Unit IV

Retro Synthesis

Definitions of some terms used in retro synthesis- Guidelines for choosing disconnections -Guidelines - 1 to 3. One group C-X disconnections- carbonyl derivatives, alcohols and olefins.Chemoselectivity- Introduction, Guidelines-1 to 7.Reversal of polarity (Umpolung) - Definition-Umpolung reagents (Epoxides, α – halo ketones, nitro compounds).

Protecting Groups

Introduction, protection of alcohols- principle – protecting group for alcohols- acetals/ketals, ethers, protection of carbonyl groups- principle - protecting group for carbonyl compounds- acyclic acetals and ketals, protection of carboxylic acid groups- principle – protecting group for carboxylic acid – methyl ester

Unit V

Organic Photochemistry

Introductory theory of light absorption, photophysical processes- Jablonski diagram. Photochemical reactions of Ketones -- Norrish type I and II, PaternoBuchi reaction, Photoreduction of Ketones, Photochemistry of α , β -unsaturated ketones, Photochemical reactions of olefins – Cis-trans isomerism, Dimerization reactions, photochemistry of butadiene, photooxidation.

(11 Hrs)

(12 Hrs)

(12 Hrs)

(11Hrs)

(LDA),

(12 Hrs)

Text Books

S.No	Name of the	Title of the Book	Publishers	Year of
	Authors			Publication
1	V.K.Ahluwalia	Organic Reaction	Narosa Publishing	2013, 4 th Edition
		Mechanism	House	
2	Jagadamba Singh	Advanced Organic	PragatiPrakasam	2007, 6 th Edition
	& L.D.S. Yadav	Chemistry		
3	Jerry March	Advanced Organic	John Wiley	2008, 4 th Edition.
		Chemistry -Reactions,	Publications Ltd	
		Mechanism & Structure		
4	S. M. Mukherji	Reaction mechanism in	The macmillan	1984, 1 st Edition.
	and S.P. Singh	organic chemistry	company of India	
			Ltd	

Reference Books

S.No	Name of the	Title of the Book	Publishers	Year of
	Authors			Publication
1	Mary Fieser and	Reagents in Organic	Wiley Interscience	2011, Vol.26
	Louis Fieser	Synthesis		
2	J.N.Gurtu and	Organic Reactions and	S.Chand&Co Pvt.,	1988 1 st Edition
	R.Kapar	Reagents	Ltd.,	
3	Solomons&Fryhles	Organic Chemistry	John Wiley & Sons	2010, 8 th Edition
4	T.L. Gilchrist &	Organic Reactions &	Cambridge	1975, 1 st Edition.
	R.C. Storr	Orbital Symmetry	University Press	
5	Stuart Warren	Organic Synthesis- The	John Wiley & Sons	2004, 1 st Edition
		Disconnection		
		Approach		
6	Charles H Depuy,	Molecular reactions and	Printice Hall	1976, 1 st Edition.
	Orville L. Chapman	photochemistry		
7	Nicholas J. Turro	Modern Molecular	The	1978, 1 st Edition.
		photochemistry	Benjamin/cummings	
			publishing co., Inc	

Pedagogy:

Lecture by chalk and talk, power point presentation, e-content, numerical exercises, group discussion, assignment, quiz, seminar.

Course Designers:

- 1. Dr. G.Selvi
- 2. Dr. P.Amutha

SECTION	WORD LIMIT	MARKS	TOTAL
A - 5 x 2 Marks	One or Two		
(No Choice)	Sentences	10	
B -5 x 5 Marks (Internal Choice at	300	25	75
same CLO Level) C – 5x 8 Marks			
(Internal Choice at same CLO Level)	600-800	40	

Question Paper Pattern End Semester Examination

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
MCE2306	PAPER VI - PHYSICAL CHEMISTRYII	THEORY	58	2	-	4
	(Group Theory and Quantum Chemistry)					

To enable the students to

- study the atomic structure and quantum mechanics with the help of group theory
- acquire knowledge about multiplication table for point groups
- learn the application of group theory in vibrational spectroscopy and determination of hybridization types in nonlinear molecules
- understand the significance of operators and their use in quantum mechanics
- know about the wave nature of particles, derivation of Schrodinger wave equations and their applications.

Course Outcome

On the successful completion of the course, students will be able to

CO Number	CO Statement			
CLO1	identify the point groups, reducible and irreducible representations, failure of classical mechanics and the need for quantum mechanics	K1		
CLO2	Explain the Symmetry, groups, point groups, reducible and irreducible representations, failure of classical mechanics and the need for quantum mechanics, normalization of wave functions and separation of variables	K2		
CLO3	construct the Group multiplication tables and character table for point groups; associate the postulates of quantum mechanics with Schrodinger Wave Equation and 1D box, harmonic oscillator, Shapes of s and p orbitals	К3		
CLO4	Analyze the IR and Raman active vibration modes for molecules, solving SWE for 3D and SHO, wave equation, Approximation, Perturbation and Variation methods	K4		
CLO5	relate the types of hybridization in nonlinear molecules based on group theory, Separate the variables for the H-atom problem and predict the radial/probability functions and curves, application of methods of He atom, wave function of many electron atoms.	K5		

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
C01	Н	Н	Н	М	М	М	Μ
CO2	Н	Н	Н	Μ	М	Μ	Μ
CO3	Н	Н	Н	Μ	Н	Μ	Μ
CO4	Н	Н	Н	М	М	М	Η
CO5	Н	Н	Н	М	Н	М	Η

PAPER VI- PHYSICAL CHEMISTRY II (MCE2306)

(Group Theory & Quantum Chemistry)

(58Hrs)

(12Hrs)

Unit I

Symmetry Elements and Symmetry Operations

Definition of identical and equivalent elements - Configurations - Symmetry operations and symmetry elements - Rotation - Axis of symmetry - Reflections - Symmetry planes - Inversion, centre improper rotations - Rotation- Reflection axis - Effect of performing successive operations (Commutative and non – commutative) – Inverse operations.

Groups and their basic properties

Definition of a group – Basic properties of a group – Definition of Abelian group – Isomorphic group - Similarity transformation and classes - Group multiplication tables-

Symmetry classification of molecules into point groups (Schoenflies symbol only)- Difference between point group and space group.

Matrices

Definition of matrix & its types- Matrix multiplication (Commutative and non-Commutative) determination of inverse of a matrix, block multiplication of matrices - Addition and subtraction of matrices - Matrix notations for symmetry operations of C_{2v} and C_{3v} point groups (use of vectors) construction of character tables for C_{2v} and C_{3v} point groups.

Unit II

Reducible and Irreducible representations

Definition of reducible and irreducible representations - Irreducible representation as orthogonal vectors - Direct product rule - The Great Orthogonality Theorem and its consequences (statement only, proof not needed)- Determination of the characters for irreducible representation of C_{2v} and C_{3v} point groups - using the orthogonality theorem - Calculation of character values of reducible representations per unshifted atom for each type of symmetry operation – Determination of total cartesian representation – Determination of direct sum from total cartesian representation. Type of hybridization of atomic orbitals in acetylene, CH_4 and $[PtCl_4]^{2-}$.

Group theory and Vibrational spectroscopy

Vibrational modes as basis for group representation – Symmetry selection rules for IR and Raman spectra (Mutual Exclusion Principle – Classification of vibrational modes).

Unit III

Birth and Postulates of Quantum Mechanics

Failure of classical mechanics- The need for quantum mechanics.

Functions - Real, complex, odd, even, orthogonal and normalized functions.

Operator - linear and non-linear, differential, Hermitian, Hamiltonian, momentum (linear and angular) commutator (Theorems) and non- commutators, Eigen functions and eigen values.

Postulates of quantum mechanics-Statements and Discussion

Schrodinger Wave Equations - (Time dependent and time independent); Requirements of the acceptable wave function (solution not needed).

(12Hrs)

(12Hrs)

Unit IV

Quantum Mechanical models/ Applications

Particle in 1D box-quantization of energy, normalization of wave function, orthogonality/ orthonormal set of particle.Particle in 3D box- separation of variables, degeneracy Harmonic Oscillatorwave equation and its solution for diatomic molecule. Rigid Rotor- wave equation and its solution for diatomic molecule (solution not needed).

Unit V

(11Hrs)

Application of Quantum Mechanics to Hydrogen and Poly electron atom H- atom (H – like species) - wave equation, separation of variables (solving of radial equation is not needed but nature of the solution to be given). Radial wave function, Radial distribution curves, Probability wave function, Probability distribution curves, Shapes of s and p orbitals only. Approximation methods-Need for approximation. Perturbation and Variation methods (1st order only) - Applications of the methods to Helium atom. Born-Oppenheimer Approximation method; Hydrogen molecular ion- Treatment of the ground state by LCAO-MO method. Helium atom- Electron spin, Pauli Exclusion Principle, Slater determinants – Approximate wave function of many electron atoms.

Text Books

S.No	Name of the Authors	Title of the Book	Publishers	Year of
				Publication
1	A.K Chandra	Quantum Chemistry	Tata McGraw	2010
			Hill Publications	
2	R.K. Prasad	Quantum Chemistry	New Age	2001, 4 th
			International	Edition
			Publishers	
3	K.V.Raman	Group Theory and its	Tata McGraw-	2002
		Applications to	Hill Publications	
		Chemistry		

Reference Books

S.No	Name of the Authors	Title of the Book	Publishers	Year of
				Publication
1	F.A. Cotton	Chemical Applications	Wiley	2013
		of Group Theory	Publications Ltd	
2	Donald. A. Mc.	Quantum Chemistry	Viva Books	reprint 2011
	Quarrie		Publications	
3	Ira. N. Levine	Quantum Chemistry	Pearson	2007, 6 th Edition
			Publications	

Pedagogy:

Lecture by chalk and talk, power point presentation, e-content, numerical exercises, group discussion, assignment, quiz, seminar.

Course Designers:

1. Dr.N.Muthulakshmi Andal

2. Dr.P.Amutha

Question Paper Pattern End Semester Examination

(11Hrs)

SECTION	WORD LIMIT	MARKS	TOTAL
A - 5 x 2 Marks (No Choice)	One or Two Sentences	10	
B -5 x 5 Marks (Internal Choice at same CLO Level)	300	25	75
C – 5x 8 Marks (Internal Choice at same CLO Level)	600-800	40	

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
MCE2307	PAPER- VII – SPECTROSCOPY	THEORY	43	2	-	3

To enable the students to

- understand the principles and instrumentation of various spectroscopic techniques
- study the effects of solvents and molecular parameters on UV and IR absorptions
- learn the applications of NMR and ESR spectra
- determine the structure of compounds from various spectral data

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	identify the characteristic values for various spectral methods and recognize the principles of spectroscopic techniques as a qualitative and quantitative method	K1
CO2	distinguish the different isomers, nature of bonding, type of electronic transition based on the spectral data	K2
CO3	relate the g factor, nuclear spin, and hyperfine coupling constant with structure of the complexes and apply the spectral data in determining the structure of unknown sample	K3
CO4	infer the fragmentation pattern, functional group present, nature of proton and carbon present in the molecule	K4
CO5	predict the structure of compound based on spectral data and evaluate the structure of complex molecules using 2D NMR techniques	K5

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Н	Н	Н	Н	Н	Н	Н
CO2	Н	Н	Н	М	Н	Н	Н
CO3	Н	Н	Н	М	Н	Н	Н
CO4	Н	Н	М	М	Н	Н	Н
CO5	Н	Н	М	М	Н	Н	Н

Paper- VII – SPECTROSCOPY (MCE2307) (43Hrs)

Unit I

UV and Visible Spectroscopy

Electronic excitation, Origin of different bands - Intensity of bands - Selection rules, Laws of photometry, Simple chromophoric groups, Factors affecting transitions - Solvent effect, effect of steric hindrance, effect of conjugation. Woodward's rule for calculating absorption maximum in conjugated dienes, polyenes, α , β - unsaturated carbonyl compounds, benzenoid systems.

Unit II

Infrared Spectroscopy

Principle, the modes of stretching and bending vibrations, bond properties and absorption trends, Factors affecting the vibrational frequencies, Applications of IR spectroscopy, Intra and intermolecular hydrogen bonding, Finger Print region, Far IR region, Metal- ligand stretching vibrations, Application of IR spectroscopy in differentiation of linkage isomers – cyano and isocyano, nitro and nitrito, thiocyanato and isothiocyanato complexes.

Unit III

Proton NMR Spectroscopy

Nuclear spin states, nuclear magnetic moments, absorption of energy, ¹H chemical shift, factors affecting chemical shifts, spin-spin coupling, coupling constant - deuterium exchange, first order and nonfirst order spectra- a review. Chemical and magnetic equivalence, shift reagents.NMR spectrum of ethanol, acetaldehyde, 1,1,2-trichoroethane, cinnamic acid, ethyl acetate, furfuraldehyde and α -chloro propionic acid

Unit IV

Carbon -13 NMR Spectroscopy

¹³C nucleus, chemical shifts, double resonance techniques - homonuclear and heteronuclear decoupling, broad band decoupling, off resonance decoupling.

2D NMR Spectroscopy

Introduction of 2D techniques: COSY and Hetero – COSY.

ESR Spectroscopy

Mass Spectrometry

Theory, derivative curves, 'g' shift, hyperfine splitting, zero field splitting and Kramer's degeneracy, factors affecting the magnitude of the 'g' values. EPR spectra of inorganic compounds.

Unit V

(9Hrs)

Introduction, principle, ion production (EI, CI, FD and FAB), presentation of spectral data, molecular ions, meta stable ions, molecular ion peak. Nitrogen rule, isotopic abundance analysis. Fragmentation process, symbolism (scission only), even and odd electron ions, scission with rearrangement. Retro Diels Alder rearrangement, Mc Lafferty rearrangement, double bond and/ or ring equivalents implied from a formula. Fragmentation associated with functional groups – aliphatic compounds, aldehydes,

(9Hrs)

(8Hrs)

(9Hrs)

(8Hrs)

ketones, carboxylic acids, esters, amides, alcohols, amines, aromatic compounds.

Text Books:

S.No	Name of the Authors	Title of the Book	Publishers	Year of Publication
1	Jag Mohan	Organic Spectroscopy	Narosa Publishing	2013
			House	
2	P.S.Kalsi	Spectroscopy of Organic	New Age	2014, 6 th Edition
		Compounds	International (P) Ltd	
3	Y. R Sharma	Elementary Organic	S. Chand	2012, 4 th Edition
		Spectroscopy	Publications	
4	William Kemp	Organic Spectroscopy	Palgrave	2002
	_		Publications	
5	H. Kaur	Spectroscopy	PragatiPrakashan	2015, 10 th Edition.
			Publications	

Reference Books:

S.No	Name of the Authors	Title of the Book	Publishers	Year of Publication
1	R.S. Drago	Physical Methods in Inorganic	East West Pvt.	1978, 1 st Edition.
		Chemistry	Ltd	
2	D. L. Pavia, G.M.	Spectroscopy	Brooks/Cole	2011, 5 th Edition.
	Lampman, G.S.Kriz and		Publications	
	James R.Vyvyan			
3	R.M. Silverstein, F.X.	Spectrometric Identification of	John Wiley	2009, 6 th Edition
	Webster	Organic Compounds	Publications	
4	M. S. Yadav	Molecular Spectroscopy	Arise Publishers	2011, 1 st Edition.
			& Distributors	

Pedagogy:

Lecture by chalk and talk, power point presentation, e-content, numerical exercises, group discussion, assignment, quiz, seminar.

Course Designers:

- 1. Dr. D. Nalini
- 2. Dr. P. Amutha

Question Paper Pattern End Semester Examination

SECTION	WORD LIMIT	MARKS	TOTAL
A - 5 x 2 Marks (No Choice)	One or Two Sentences	10	
B -5 x 5 Marks (Internal Choice at same CLO Level)	300	25	75
C – 5x 8 Marks (Internal Choice at same CLO Level)	600-800	40	

Course Number	Course Name	Category	L	Т	Р	Credit
MCP19A1	IDC –CLINICAL MICROBIOLOGY & BIOCHEMISTRY	THEORY	60	-	-	4

To enable the students to

- understand the principles of clinical chemistry
- gain the importance of hypertension and hypotension
- understand the principles and the concepts underlying clinical laboratory tests in clinical chemistry
- differentiate the blotting technique and vaccination types
- acquire knowledge on basic mechanisms involved in the causation and treatment of common disease and their influence on clinical presentation and therapy

Course Outcomes

On the successful completion of the course, students will be able to

CLO Number	CO Statement	Knowledge Level
CLO1	differentiate the clinical specimens	K ₃
CLO2	classify the composition of blood, Perform analysis of chemical analytes in blood and other body fluids	K ₂ ,K ₃
CLO3	calculate the test results and convert them to form meaningful in patient assessment	K ₃
CLO4	Compare and contrast the different types of blotting techniques and vaccination.	K ₆
CLO5	correlate laboratory results with infectious diseases processes	K_4

Mapping with Programme Outcomes

CLOs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CLO1	Η	Μ	Н	Μ	Н	Н	М
CLO2	Н	Н	Н	Н	L	L	М
CLO3	Н	Н	М	Н	М	М	М
CLO4	Н	М	М	М	Н	Н	М
CLO5	Н	М	М	Н	Н	Н	Н

INTER DISCIPLINARY COURSE (For M.Sc., Chemistry/ Botany Students) CLINICAL MICROBIOLOGY & BIOCHEMISTRY (MCP19A1) (60 Hrs) (12 Hrs)

Clinical Microbiology

Clinical specimens –Collection- needle aspiration, Incubation, Catheter; handling, transport. Isolation of microbes from specimens-selective media, differential media, enrichment media, characteristic media.Identification of microbes (virus, bacteria, fungi and parasites) through morphological and biochemical characteristics.

Unit II

Unit I

Principles of Clinical Biochemical Analysis

Basis of analysis of body fluids for diagnostic prognostic and monitoring purposes.

Blood Analysis

Composition of blood, blood grouping & matching, physiological function of Plasma protein, role of blood as oxygen carrier, blood pressure - Hypertension & hypotension, coagulation of blood, Anaemia causes & control .Urea determination- the urease method, estimation of bile pigment in serum, estimation of total protein in serum, estimation of total proteins and albumin based on biuret method and BCG method.

Unit III

Clinical Chemistry

Determination of Glucose in Serum by Folin& Wu's method, Determination of Serum Cholesterol -Sackett's method for total cholesterol.Diagnostic test for Sugar in urine. Test for salt in serum, test for chlorides. Detection of cholesterol in urine, detection of diabetes. Typical reference ranges for biochemical analyst Viz, sodium, potassium, urea, creatinum, AST, ALT, AP and cholesterol and their significance.Biological role of sodium, potassium, calcium, iodine, copper and zinc.

Unit IV

Electrophoresis, Blotting and Vaccination

Principles, Techniques: southern, western and northern blotting. Vaccines and immunizations: Active immunization, passive immunization, Type of vaccines-whole organism vaccines, purified macromolecules as vaccines, Recombinant -vector vaccines, DNA vaccines.

(12Hrs)

(12Hrs)

(12Hrs)

Unit V

(12 Hrs)

Common Diseases & their Treatments

Insect borne diseases: Malaria, Filarisis&Plague.Air Borne diseases: Diphtheria, Whooping cough, Influenza, Measles mumps, Tuberculosis, Water borne diseases: Cholera, Typhoid, &Dysentry. Common disease of the digestive system- jaundice, respiratory system- asthma, nervous system- epilepsy. Some other common diseases-piles, leprosy. First aid for accidents. Common poisons & their antidotes - acid poisoning, alkali poisoning, Poisoning by disinfectants hallucinogens.

Toxic effects of metals

Toxicity of Iron, Copper, Arsenic, Mercury, Lead, Cadmium, Aluminium& Radionuclide & Wilson's disease.

Text Books:

S.No	Author	Title	Publishers	Year of publication
1	Asim. K. Das	Bioinorganic chemistry 1 st edn.	Books & Allied Pvt Ltd.	2007
2	Jayashree Ghosh	Textbook of Pharmaceutical Chemistry3 rd edn	S. Chand & Co	2003
3	Jayashree Ghosh	Fundamental concepts of Applied Chemistry1 st edn	S. Chand & Co	2006
4	Rana, S.V.S	Bio Techniques. Theory and Practice.	Rastogi Publications, Meerut.	2005
5	AmbikaShanmugam	Fundamentals of Biochemistry for Medical Students	Nagaraj and Company Private Limited	2005
6	MallikarjunaRao, N	Medical Biochemistry 6 th edn.	New Age International (P) Limited, Publishers	2006

Reference Books:

S.No	Author	Title	Publishers	Year of publication
1	Lensing M.Prescott, John P, Harley, Donald A Klein.	Microbiology,6 th Edition,	Tata mc Graw Hill, New Delhi	2005
2	Keith Wilson, John Walker.	Principles and Techniques of Biochemistry and Molecular Biology, 6 th Edn.	Cambridge University Press	2008
3	By Douglas B. Lowrie, Robert G. Whalen	DNA vaccines-methods and protocols	Humana press, Totowa, New Jersey	2000

Pedagogy:

Lecture by chalk and talk, power point presentation, e-content, simulation, numerical exercises, group discussion, assignment, quiz, seminar.

Course Designers:

- 1. Dr.N.ShyamalaDevi
- 2. Dr.N.Arunadevi
- 3. Dr. K. Gajalakshmi
- 4. Dr.K .S. Tamilselvi

Question Paper Pattern

End Semester Examination

Bloom's Category	Section	Marks	Total
Understand(K ₂)	A - 5X5 marks (Either or)	25	
Apply / Analyse Evaluate (K ₃ , K ₄ , K ₅)	B – 5 X15marks (Either or)	75	100