

DEPARTMENT OF CHEMISTRY

CHOICE BASED CREDIT SYSTEM & OUTCOME BASED EDUCATION SYLLABUS

MASTER OF CHEMISTRY

2022 - 2024

PROGRAMME OUTCOMES

After completion of the programme, the students will have the

- **PO1: ability** to function as responsible individuals with ethical values, accountable to the community
- **PO2: detailed** knowledge of the major areas of chemistry including a wide range of factualinformation and experimentally observed phenomena.
- **PO3: ability** to apply chemical concepts in new situations i.e., ability to predict physical andchemical properties by comparison with analogues.
- PO4: professional Skill to handle standard equipments and to analyze the data.
- **PO5: ability** to solve unseen chemical problems both qualitative and quantitative by interpretation and manipulation of experimental data.
- **PO6: ability** to present chemical research results to a technically literate audience by means of an oral presentation, scientific poster or a written report.

PO7: ability to assimilate in the course of different modules throughout the various years ofstudy and to apply this when required.

PROGRAMME SPECIFIC OUTCOME

The students at the time of graduation will

- **PSO1: possess** skills in spectral, analytical, qualitative and quantitative techniques which will beuseful in industry
- **PSO2: be** able to design a synthetic route for new compounds and transform innovative ideasinto reality
- **PSO3: possess** skill in problem solving, critical thinking and analytical reasoning as applied toscientific problems.

DEPARTMENT OF CHEMISTRY

2022-2024

					Total H	ours	_	Ма	ıx. Ma	rks	
Sem	Subject Code	Title of the paper		Instruction hours/ week	Contact Hours	Tutorial Hours	Duration of Examinatior	CA	ESE	Total	Credits
I	MCE2201	Paper – I Inorganic Chemistry and solid state chemistry	CC	4	56	4	3	50	50	100	4
	MCE2202	Paper – II Organic Chemistry – I (Organic Reaction Mechanism & Stereochemistry)	CC	5	71	4	3	50	50	100	5
	MCE2203	Paper – III Physical Chemistry – I (Classical & Statistical Thermodynamics)	CC	5	71	4	3	50	50	100	5
	MCE2204	Paper – IV Analytical Techniques in Chemistry	CC	4	56	4	3	50	50	100	4
	MCE21P1	Practical – I Organic Chemistry Practical - I	CC	4	60	-	-	-	-	-	-
	MCE21P2	Practical – II Inorganic Chemistry Practical – I		4	60	-	-	-	-	-	-
	MCE21P3	Practical – III Physical Chemistry Practical – I	CC	4	60	-	-	-	-	-	-
п	MCE2205	Paper V Organic Chemistry-II(Reagents,Rearrangements,PericyclicReactions&Photochemistry)	CC	5	71	4	3	50	50	100	5
	MCE2206	Paper VI Physical Chemistry-II (Group Theory &Quantum Chemistry)	CC	5	71	4	3	50	50	100	5
	MCE2207	Paper VII-Spectroscopy	CC	4	56	4	3	50	50	100	4
	MCE21P1	Practical I Organic Chemistry Practical – I	CC	4	60	-	6	50	50	100	4
	MCE21P2	Practical II Inorganic Chemistry Practical – I	CC	4	60	-	6	50	50	100	4
	MCE21P3	Practical III Physical Chemistry Practical – I	CC	4	60	-	6	50	50	100	4
	MCP19A1	IDC-Clinical microbiology & Biochemistry	GE 3	4	60	-	3	-	100	100	4

				Total	Hours			Max. N	Marks	
Sem	Subject Code	Title of the paper	Instruction hou week	Contact Hours	Tutorial Hours	Duration of Examination	CA	ESE	Total	Credits
	MCE2208	Paper – VIII Organic Chemistry –	5	73	2	3	50	50	100	5
		III (Chemistry of Natural Products)								
	MCE2209	Paper – IX Elective – I (Coordination & Organometallic Chemistry)	4	58	2	3	50	50	100	4
	MCE2210	(or) Paper – IX Elective – II Medicinal Chemistry	4	58	2	3	50	50	100	4
	MCE2211	Paper -X- Physical Chemistry III (Reaction Kinetics & Electrochemistry	4	58	2	3	50	50	100	4
III	MCE21P4	Practical-IV-Organic Chemistry Practical – II	4	60	-	6	50	50	100	4
	MCE21P5	Practical-V-Inorganic Chemistry Practical – II	4	60	-	6	50	50	100	4
	MCE21P6	Practical-VI Physical Chemistry Practical – II	5	75	-	6	50	50	100	4
	MCE22S1	Research Methodology	2	30	-	3	-	100	100	2
	MNM22CS2	Cyber Security II	2	30	-	-	100	-	100	Grade
	MCE17CE	Comprehensive Examination	-	-	-	1	-	-	-	Grade

				rs/	Total l	Hours			Max. N	Aarks	
Sem	Subject Code	Title of the paper		Instruction hou week	Contact Hours	Tutorial Hours	Duration of Examination	CA	ESE	Total	Credits
IV	MCE2212	Paper – XI Elective III - Chemistry & Technology of Polymers (or)	GE	4	58	2	3	50	50	100	4
	MCE2213	Paper – XI Elective IV – Applied Chemistry		4	58	2	3	50	50	100	4
	MCE2214	Paper- XII Green Chemistry	CC	3	43	2	3	50	50	100	3
	MCE2215	Paper - XIII Nano Chemistry and Bioinorganic Chemistry *	CC	3	43	2	3	50	50	100	3
	MCE2216 (Optional) MCE2217	ALC – Chemoinformatics (or) ALC- Industrial Chemistry	CC	Self- study	-	-	3	25	75	100	5#
	MCE21PROJ	Project & Viva-voce	GE		3 Months	-		50	50	100	5

CC – Core Courses GE – Generic Elective

CA – Continuous Assessment ESE - End Semester Examination

AEC – Ability Enhancing Course

Credits is applicable to the candidates who take up the advance learners course exam

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
MCE2201	INORGANIC CHEMISTRY PAPER – I (Inorganic Chemistry and Solid State Chemistry)	THEORY	56	4	-	4

To make the students to

- gain knowledge about structure and bonding in inorganic chains and rings.
- understand the concepts of isopoly, heteropoly acids, anions and inorganic polymers.
- learn about inorganic crystals and structural determination methods.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowldge Level
CO1	Identify and extend the applications of inorganic compounds as rings and clusters	K ₂ , K ₃
CO2	Appraise the importance of inorganic polyacids	K ₅
CO3	Extend and assess the applications of inorganic compounds as polymeric structures	K ₂ , K ₅
CO4	Distinguish the types of solids and their defects	K_4
CO5	Determine and compile the structures of inorganic crystals	K ₅ , K ₆

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Н	Н	Н	М	М	Н	Η
CO2	Н	Н	Н	М	М	Н	Η
CO3	Н	Н	Н	М	М	Н	Η
CO4	Н	Н	Н	Μ	Н	Н	Н
CO5	Н	Н	Н	Н	Н	Н	Н

INORGANIC CHEMISTRY PAPER – I (MCE2201)

(Inorganic chemistry and solid state chemistry) (56 Hrs)

Unit – I

Chains and Rings

Chain – Catenation. Heterocatenation - Silicate minerals, orthosilicates, pyrosilicates, zeolitesintercalation compounds-preparation and properties.

Rings – Borazines, phosphozenes – Preparation, properties and structure.

Unit – II

Isopoly and Heteropoly Acids and Anions

Introduction, polymerization of CrO_4^{2-} anion, polymerization of molybdates, tungstates, vanadates, niobates and tantalates. Isopoly anions and isopoly acids of Mo⁶⁺ and W⁶⁺, isopoly vanadates, isopoly niobates and isopoly tantalates. Heteropoly anions and heteropoly acids different types, important reactions of iso and heteropoly anions.

Unit – III (11 Hrs)

Inorganic Polymers

Introduction, general properties, glass transition temperature, classification. Nitrides of sulphur - S_4N_4 , $S_4N_3^+$, $(SN)_x$ – One dimensional conductors- preparation and structure. Silicon based polymers – Preparation, properties and types of silicones.

Unit – IV

Solid State Chemistry – I

Structure - Types and classification of solids, distinction between crystalline and amorphous solids. Unit cell, Bravais lattice, classification of crystals based on bond type and packing in crystals. Imperfections in crystals - Types of defects, stoichiometric defects -Schottky and Frenkel. Non-stoichiometric defects - Metal excess and metal deficient, consequences of metal deficiency defects.

Unit – V

Solid State Chemistry - II

Inorganic crystals - Coordination number, radius ratio rule and shapes of ionic crystals. Structures of ionic crystals - AX type: CsCl, ZnS (Zinc blende, Wurtzite), AX₂ type: CaF₂,

(11 Hrs)

(11 Hrs)

(11 Hrs)

(12 Hrs)

TiO₂, CdI₂. Experimental methods of crystal structure determination: X - ray diffraction, electron diffraction and neutron diffraction. Comparative study of the three diffraction methods.

S.No	Name of the Authors	Title of the Book	Publishers	Year of Publication
1	SatyaPrakash, G.D. Tuli, S.K. Basu, R.D. Madan	Advanced Inorganic Chemistry – Vol. I	S.Chand & Co. Ltd.	Reprint 2012
2	Gurdeep Raj	Advanced Inorganic Chemistry – Volume I	Krishna Prakasam Media (P) Ltd.	1999, 25 th Edition
3	B.R. Puri, L.R. Sharma, K.C. Khalia	Principles of Inorganic Chemistry	Milestone Publisher	Copyright 2007-2008
4	James E. Huheey, Ellen A. Keiter	Inorganic Chemistry	Pearson	Copyright 2006, 4 th Edition

Text Books:

Reference Books:

S.No	Name of the Authors	Title of the Book	Publishers	Year of Publication	
1	F. Albert Cotton and Geoffrey Wilkinson	Advanced Inorganic Chemistry	Wiley Interscience	1999, 6 th Edition	
2	Anthony R. West	Solid State Chemistry and its Application	Wiley India	2011 Reprint	
3	J.D. Lee	Concise Inorganic Chemistry	Wiley India	2010 Reprint	

Pedagogy:

Lecture by chalk and talk, power point presentation, e-content, Simulation, group discussion, assignment, quiz, seminar.

Course Designers:

Dr. P. Kanchana

Dr. S. Jone Kirubavathy

Question Paper Pattern

SECTION	WORD LIMIT	MARKS	TOTAL
A - 5 x 2 Marks (No Choice)	One or Two Sentences	10	
B -5 x 6 Marks (Internal Choice at same CLO Level)	300	30	100
C – 5x 12Marks (Internal Choice at same CLO Level)	600-800	60	

End Semester Examination

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
MCE2202	PAPER II – ORGANIC CHEMISTRY – I (Organic Reaction Mechanism & Stereochemistry)	THEORY	71	4	-	5

To enable the students to

- gain knowledge about the aromaticity and organic reaction mechanism
- understand the conformation & stereochemistry of organic compounds
- learn the mechanism of substitution & elimination reactions in aliphatic & aromatic compounds

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	analyze and predict the aromaticity of compounds	K4 _, K2
CO2	develop skills for identifying the kinetics of reactions	K5
CO3	predict and apply the mechanism for synthesizing organic compounds	K2, K3
CO4	analyze various elimination reactions and compare with substitution reactions	K4
CO5	employ the concepts of stereo isomerism to organic compounds	K3

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Н	Н	Н	М	М	Н	Н
CO2	Н	Н	Н	М	L	Н	Н
CO3	Н	Н	Н	М	L	Н	Н
CO4	Н	Н	Н	М	L	Н	Н
CO5	Н	Н	Н	М	М	Н	Н

Nucleophilic substitution at an allylic, aliphatic, trigonal and vinylic carbon. Reactivity effects of

substrate structure, attacking nucleophile, leaving group and reaction medium, phase transfer

catalysis, ambident nucleophiles and ambident substrates. Swain-Scott, Grunwald- Winstein

The $S_N 1$, $S_N 2$ $S_N i$ mechanisms. The neighbouring group mechanism, neighbouring group

Aromatic Nucleophilic Substitution

Aliphatic Nucleophilic Substitution

participation by π and σ bonds, anchimeric assistance.

The S_NAr, S_N1, Benzyne and SR_N1 Mechanisms. Reactivity – Effect of substrate structure, leaving group and attacking nucleophile.

O and S – nucleophiles, Bucherer and Rosenmund reactions, Von Richter rearrangement.

(isolation, trapping and detection)- Isotopic labeling and cross over experiments- Stereochemical evidence. Kinetic methods- Mechanistic implications of rate law- Isotope effects. Kinetic and thermodynamic control of reactions - Hammonds postulates, linear free energy relationship-Hammett and Taft equations.

Types of reactions and mechanisms, Non kinetic methods- Product analysis, intermediate criteria

Reaction Mechanism

Criteria - Huckel's rule - Aromatic character in benzene, four, five, seven, eight membered rings- Aromaticity of benzenoids and heterocyclic compounds. Non benzenoid aromaticsazulene, ferrocene, tropolone, sydnones and annulenes (synthesis not required) - Non aromatic and anti-aromatic systems.

Unit II

relationship.

Aromaticity

Unit I

PAPER-II- ORGANIC CHEMISTRY – I (MCE2202)

(Organic Reaction Mechanism and Stereochemistry) (71 Hrs)

(14 Hrs)

(14 Hrs)

Unit III

Aliphatic Electrophilic Substitution

Bimolecular mechanisms – S_E2 (front), S_E2 (back) and S_Ei . Unimolecular mechanism-S_E1 mechanism, substitution by double bond shifts, other mechanisms – addition-elimination and cyclic mechanism.

Hydrogen electrophiles: hydro-dehydrogenation, keto-enol tautomerism.

Halogen electrophiles: Halogenation of aldehydes, ketones and carboxylic acids. Nitrogen electrophiles: aliphatic diazonium coupling. Sulphur electrophiles: sulphonation Carbon electrophiles: acylation, alkylation, Stork-enamine reaction.

Aromatic Electrophilic Substitution

Mechanism, orientation and reactivity, the ortho/para ratio. Reactions involving nitrogen electrophiles: nitration, nitrosation and diazonium coupling, ipso substitution. Sulphur electrophiles: Sulphonation, Jacobsen rearrangement. Carbon electrophiles: Alkylation, acylation, arylation reactions - Scholl reaction, Gattermann reaction, Gattermann-Koch reaction, Reimer- Tiemann reaction, Kolbe-Schmidt reaction, Houben- Hoesch reaction, Vilsmeier-Haack reaction, Hoffmann-Martius reactions.

Unit IV

Elimination Reactions

E1, E2 and E1cB mechanism, orientation of double bond- structural and stereochemical factors governing eliminations - Hoffmann and Saytzeff rules, Bredt's rule - Effect of changes in the substrate, base, leaving group and medium in E1, E2 and E1CB reactions- Elimination vs substitution- Pyrolytic elimination- Chugaev reaction- Hoffmann degradation- Cope elimination.

Unit V

Stereochemistry

Optical isomerism - Concept of chirality- Stereochemistry of sulphur and nitrogen compounds - Concept of prochirality - Enantiotopic and diastereotopic ligands and faces-Stereospecific and stereoselective reactions. R, S - nomenclature of compounds having one and more than one chiral centres- Axial chirality- (Optical isomerism of biphenyl, allenes and spirens)- Planar chirality (Optical isomerism of ansa compounds and cyclophanes)- Helicity (Optical isomerism of over- crowded molecules)

(14 Hrs)

(14 Hrs)

Geometrical Isomerism

E-Z Notation- Determination of configuration of geometrical isomerism-Stereoisomerism of cyclic compounds (upto six membered ring) - Aldoximes and ketoximes.

Conformational Analysis

Configuration and conformation- Conformation of acyclic compounds- cyclohexane, decalins, perhydrophenanthrenes and carbohydrates. Effect of conformation on reactivity, Curtin Hammett Principle.

Text Books:

S.No	Name of the Authors	Title of the Book	Publishers	Year of
				Publication
1	I.L. Finar	Organic Chemistry Vol I	Pearson	reprint 2009,6 th
			Education	Edition
2	I.L. Finar	Organic Chemistry Vol II	Pearson	reprint 2011,5 th
			Education	Edition
3	Jagdamba Singh and	Advanced Organic	Pragati	2010, 6 th Edition
	Yadav	Chemistry	Prakasham	
4	Jerry March	Advanced Organic	Wiley	reprint 2010,4 th
		Chemistry	Publications	Edition.
5	Stanely H. Pine	Organic Chemistry	Tata MC Graw	2007, 5 th Edition
			Hill	
6	Jie Jack Li	Name Reactions	Springer	2004, 2 nd Edition

Reference Books:

S.No	Name of the Authors	Title of the Book	Publishers	Year of		
				Publication		
1	R.K. Bansal	Organic Reaction	Tata McGraw	reprint 2006, 3 rd		
		Mechanism	Hill Publications	Edition		
2	F. A.Carey and	Advanced Organic	Springer	2010		
	Sundberg	Chemistry-Part A				
3	F. A.Carey and	Advanced Organic	Springer	2007		
	Sundberg	Chemistry-Part B				
4	D .Nasipuri	Stereochemistry of	New Age	2008, 2 nd Edition		
		Organic Compounds	Publishers			

Pedagogy:

Lecture by chalk and talk, power point presentation, e-content, group discussion, assignment, quiz, seminar.

Course Designers:

- 1. Dr. G. Selvi
- 2. Dr.N.Shyamala Devi
- 3. Dr. P. Amutha

SECTION	WORD LIMIT	MARKS	TOTAL
A - 5 x 2 Marks (No Choice)	One or Two Sentences	10	
B -5 x 6 Marks (Internal Choice at same CLO Level)	300	30	100
C – 5x 12Marks (Internal Choice at same CLO Level)	600-800	60	

Question Paper Pattern End Semester Examination

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
MCE2203	Paper-III-PHYSICAL CHEMISTRY PAPER – I					
	(Classical & Statistical Thermodynamics)	THEORY	71	4	-	5

To enable the students to

- understand and apply the concept of fugacity, activity and chemical potential.
- acquire knowledge on third law of thermodynamics and probability and ensembles.
- gain knowledge about the distribution laws (classical and statistical) and their applications

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	interpret the physical significance of chemical potential.	K2
CO2	apply and analyze probability to molecular energy levels.	K3 , K4
CO3	calculate the molecular velocities based on Maxwell Boltzmann distribution law.	K4
CO4	apply thermodynamic concepts to evaluate the relationship between thermodynamic properties.	K3, K6
CO5	evaluate statistical thermodynamics to the properties of identical indistinguishable particles like electrons	K6

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Н	Н	Н	М	Н	Н	Η
CO2	Н	Н	Н	М	Н	Н	Н
CO3	Н	Н	Н	М	Н	Н	Η
CO4	Н	Η	Μ	Μ	Μ	Н	Η
CO5	Н	Н	Н	М	Н	Н	Н

PAPER III- PHYSICAL CHEMISTRY PAPER – I (MCE2203)

(Classical and Statistical Thermodynamics) (71 Hrs)

Unit I

Classical Thermodynamics

Concept of chemical potential – Fugacity- definition- determination of fugacity of gases by graphical method, from equation of state, approximation method and generalized methodvariation of fugacity with temperature. Fugacity and the standard state for non-ideal gases-Fugacity coefficient, fugacity of mixture of non- ideal gases.

Activity and activity coefficient. Standard states – activity of solutions. Determination of activity of solute and solvent by freezing point method.

Unit II (14 Hrs)

Third Law of Thermodynamics

Nernst heat theorem, third law of thermodynamics - Need for third law, different forms of stating third law, thermodynamic quantities at absolute zero, probability and third law, statistical meaning of third law and apparent exceptions, negative absolute temperature.

Probability and Ensembles

Theorems of permutations, combinations and probability. Thermodynamic probability to molecular systems- States of maximum thermodynamic probability of systems involving energy levels.

Distinguishable and indistinguishable particles. Microstates and macrostates. Ensembles – definition- microcannonical, cannonical and grand cannonical ensembles.

Unit III

Maxwell Boltzmann Statistics

Stirling's approximation formula, Maxwell Boltzmann distribution law – assumptions, derivation for the system having non- degenerate and degenerate energy levels. Experimental verification of Maxwell's distribution of molecular velocities by Stern method. Limitations of Maxwell Boltzmann distribution law.

(14 Hrs)

(14 Hrs)

2D Velocity Distribution Law

Maxwell's distribution law of molecular velocities, evaluation of alpha and beta in Boltzmann statistics. Evaluation of average velocity, root mean square velocity and most probable velocity from distribution law of molecular velocities, molecular velocities and energies of an ideal gas.

Unit IV

(14 Hrs)

Equipartition of Principle of Energy

Calculation of heat capacities of ideal gases- limitations.

Partition Functions

Definition- explanation- molecular partition function- molar partition function-Relationship between partition function and thermodynamic properties E, H, S, A, G, C_V and C_P . Translational partition functions- Sackur- Tetrode equation. Rotational partition functions – ortho/para hydrogen- vibrational partition functions- electronic partition functions. Evaluation of thermodynamic properties for mono and diatomic ideal gas molecules from partition functions.

Unit V

(15 Hrs)

Quantum Statistics

Bose Einstein distribution law- derivation – entropy of boson applications. Derivation of Planck's black body radiation law. Bose Einstein condensation. Helium at low temperature Fermi – Dirac distribution law- derivation, entropy of fermions, Applications - electron gas, fermi energy of free electrons at absolute zero. Heat capacity of free electrons in metals. Heat capacity – Einstein theory and Debye theory, Debye T-cube law, comparison of Maxwell Boltzmann, Bose Einstein, Fermi - Dirac statistics

Text Books:

S.No	Name of the Authors	Title of the Book	Publishers	Year of	
			Publication		
1	Samuel Glassstone	Thermodynamics for	East West Press	Reprint 2002	
		Chemists			
2	M.C. Gupta	Statistical	Wiley Eastern	1990, 1 st	
		Thermodynamics	Publications	Edition	
3	Ashley	Classical and Statistical	Pearson	2012	
		Thermodynamics	Education		

Reference Books:

S.No	Name of the	Title of the Book	Publishers	Year of
	Authors			Publication
1	P.W. Aktins	Physical Chemistry	Oxford	1978,
			University	1 st Edition
				(Reprint 2005)
2	Gurdeep Raj	Advanced Physical	GOEL Publishing	2002, 27 th Edition
		Chemistry	House	
3	Peter Atkins &	Elements of Physical	Oxford	2 nd Print 2014,5 th
	Julio de Paula	Chemistry	University	Edition
4	F.W. Sears and	Thermodynamics,	Narosa	Reprint 2013
	G.L. Salinger	Kinetic & Statistical	Publishing House	
		thermodynamics		
5	Frederick.T. Wall	Chemical	W.H. Freeman &	1974, 3 rd Edition.
		Thermodynamics	Company	

Pedagogy:

Lecture by chalk and talk, power point presentation, e-content, numerical exercises, group discussion, assignment, quiz, seminar.

Course Designers:

- 1. Dr. D.Nalini
- 2. Dr.N.Arunadevi
- 3. Dr. Sowmya Ramkumar

End Semester Examination							
SECTION	WORD LIMIT	MARKS	TOTAL				
A - 5 x 2 Marks (No Choice)	One or Two Sentences	10					
B -5 x 6 Marks (Internal Choice at same CLO Level)	300	30	100				
C – 5x 12Marks (Internal Choice at same CLO Level)	600-800	60					

Question Paper Pattern

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
MCE2204	PAPER IV– ANALYTICAL TECHNIQUES IN CHEMISTRY	THEORY	56	4	-	4

To enable the students to

- understand and analyze various types of chromatographic techniques.
- acquire knowledge about the configuration and confirmation of organic molecules by ORD and CD
- gain knowledge about the different thermal and electro analytical techniques.
- understand the principle of atomic absorption and Emission spectroscopy

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Apply HPLC, GC and SFC chromatographic techniques to identy the components	K1, K3
CO2	Relate the concepts of ORD & CD to predict the configuration and conformations of simple cyclic ketones	K3, K6
CO3	Classify thermo analytical techniques and to assess the thermal stability of a chemical compound	K2, K4, K6
CO4	Infer the principle, instrumentation of coulometry, polarography and cyclic voltammetry	K4
CO5	Perceive the sources, properties, types of atomizers and their applications	К5

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Н	Н	Н	Н	Н	Н	Н
CO2	Н	Н	Н	М	Н	Н	Н
CO3	Н	Н	Н	Н	Н	Н	Н
CO4	Н	Н	Н	Н	Н	Н	Н
CO5	Н	Н	Н	Н	Н	Н	Н

PAPER IV– ANALYTICAL TECHNIQUES IN CHEMISTRY (MCE2204) (56 Hrs) Unit I (11 Hrs)

Chromatography

High Pressure Liquid Chromatography (**HPLC**)-Introduction, Characteristic features of HPLC, Principle, column processes & band broadening, instrumentation, Applications of HPLC. **Gas Chromatography** (**GC**) - Introduction, Principle, Theory, instrumentation, Evaluation of gas chromatogram, identification of chromatogram, plate theory for GC, Applications.

Super Critical Fluid Chromatography (SFC) - Characteristics of super critical fluids, Comparison of SFC with HPLC & GLC, Applications of SFC

Unit II

Analytical Techniques

ORD & CD – Principle, instrumentation - Visual Polarimetry (for ORD) types of ORD curves, axial haloketone rule & octant rule – Applications to determine the configuration & conformation of simple monocyclic & bicyclic ketones.

Unit III

Thermoanalytical Methods

Principle - Thermogravimetric analysis & differential thermal analysis- discussion of various components with block diagram- TGA & DTA curves of $CuSO_4.5H_2O$, $MgC_2O_4.H_2O$ & $Ca(OOCCH_3)_2.H_2O$ – Simultaneous DTA-TGA curves of $SrCO_3$ in air & $CaC_2O_4.H_2O$ in air & CO_2 . Factors affecting TGA & DTA curves. UPS & ESCA- Basic principles, sources, instrumentation, applications. DSC- Principle, Instrumentation and application.

Unit – IV

Electro Analytical Techniques

Coulometry: Introduction, Types of colometric methods, Types of coulometers $-O_2-H_2$, Ag & I₂ coulometer, coulometric titrations- Internal and external generation of titrants, applications.

Polarography: Introduction, apparatus, working, polarographic measurements, interpretation of polarographic waves, equation for polarographic wave, half wave potential, DME - Applications.

(11 Hrs)

(11 Hrs)

(12 Hrs)

Cyclic Voltammetry: Principle, Normal Pulse Voltammetry (NPV), Differential Pulse Voltammetry (DPV)

Unit – V

Atomic Spectroscopy

Sources of atomic and emission absorption spectra. Atomic spectroscopy based on flame atomization – flame atomizers, properties of flames, quantitative analysis. Flame Atomic Absorption Spectroscopy – Introduction, sources, instrumentation. Flame emission spectroscopy – Introduction, instrumentation.

Text Books:

S.No	Name of the	Title of the Book	Publishers	Year of
	Authors			Publication
1.	E.L Eliel	Stereochemistry of Carbon	Tata Mc Graw	2004, 30 th
		Compounds	Hill	Edition
2.	Dr. H. Kaur	Instrumental Methods of Chemical	Pragati	$2008, 4^{\text{th}}$
		Analysis	Prakashan	Edition
3.	Mahinder	Analytical Chemistry- Instrumental	Dominant	2003, 1 st
	Singh	Techniques	Publishers &	Edition
			Distributors	
			NewDelhi	
4.	B. K Sharma	Instrumental Methods of Chemical	Goel	1996, 15 th
		Analysis	Publications	Edition
5.	H. H Willard,	Instrumental Methods of Analysis	CBS Publishers	1986, 7 th
	L. L Merritt.		& Distributors	Edition
	and J. A Dean,			
	F.A. Settle			

Reference Books:

S.No	Name of the Authors	Title of the Book	Publishers	Year of
				Publication
1.	L.I.Antropov	Theoretical	MIR publishers,	1972, 1 st Edition
		electrochemistry	Moscow	
2.	S. M. Khopkar	Basic Concepts of	Wiley Eastern	1884, First
		Analytical Chemistry	Ltd	Edition
3.	D. A Skoog,	Analytical Chemistry-	Saunders	1994, 6 th Edition
	F.J.Holler and D. M	An Introduction	College	
	West		Publications	
4.	M.S.Yadav	Instrumental Methods of	Campus Book	2006, 1 St Edition
		Chemical Analysis		

Pedagogy: Lecture by chalk and talk, power point presentation, e-content, Simulation, numerical exercises, group discussion, assignment, quiz, seminar.

(11 Hrs)

Course Designers:

- 1. Dr. E. Kayalvizhy
- 2. Dr. G. Sathya Priyadarshini

Question Paper Pattern

End Semester Examination

SECTION	WORD LIMIT	MARKS	TOTAL
A - 5 x 2 Marks (No Choice)	One or Two Sentences	10	
B -5 x 6 Marks (Internal Choice at same CLO Level)	300	30	100
C – 5x 12Marks (Internal Choice at same CLO Level)	600-800	60	

SEMESTER-II

COURSE NUMBER	COURSE NAME	CATEGO RY	L	Т	Р	CREDIT
MCE2205	PAPER V - ORGANIC CHEMISTRY – II	THEORY	71	4	-	5

Preamble

To enable the students to

- understand the applications of reagents in organic synthesis
- gain knowledge about the mechanism of molecular rearrangements
- learn the stereochemistry of pericyclic reactions by correlation diagram, FMO and PMO methods
- understand the principles of photochemistry and Retro Synthesis and their applications

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	assess the use of organic reagents in synthesis of new compounds	K5
CO2	recognize and analyze the mechanisms of various molecular rearrangements	K2, K4
CO3	classify pericyclic reactions and interpret the product formation based on the stereochemical methods	K2, K5
CO4	apply retro synthesis to design synthetic routes for synthesis of organic compounds	K3
CO5	appreciate the role of photochemistry and the significant applications of photochemistry in research.	K6

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Н	Н	Н	М	Н	Н	Η
CO2	Н	Н	Н	М	Н	Н	Н
CO3	Н	Н	Н	М	Н	Н	Н
CO4	Н	Н	Н	М	Н	Н	Н
CO5	Н	Н	Н	М	Н	Н	Н

PAPER – V -ORGANIC CHEMISTRY –II (MCE2205)

(Reagents, Rearrangements, Pericyclic Reactions, Retro Synthesis & Photochemistry) (71 Hrs)

Unit I

Reagents in Organic Synthesis

Use of the following reagents in organic synthesis and functional group transformations - complex metal hydrides, Gilman's reagent, lithium dimethyl cuprate (LDC), lithium diisopropyl amide (LDA), dicyclohexyl carbodimide (DCC), 1,3-dithiane, tri-n-butyl tin hydride, Osmium tetroxide, DDQ, SeO₂, phase transfer catalysts - Crown ethers, Wilkinson's catalyst, Baker's yeast.

Unit II

Molecular Rearrangements

Intramolecular 1, 2- shifts, Wagner Meerwein and related rearrangements, Migration to carbonyl carbon: Neber and Baeyer Villiger rearrangement. Rearrangement of electron deficient nitrogen and oxygen: Dienone – Phenol, Favorskii, Fries, Wolf, Benzidine, Steven's, Demzanov, Sommlet-Hauser, Chapmann and Wallach rearrangements.

Unit III

Pericyclic Reactions

Molecular orbital symmetry, Frontier orbitals of ethylene, 1, 3-butadiene, 1, 3, 5hexatriene. Classification of pericyclic reactions. Electrocyclic reactions – 4n and 4n+2 systems, Woodward –Hoffmann rules, Correlation diagram, FMO and PMO approach [1, 3-dienes and 1, 3, 5-trienes]

Cycloadditions

Antarafacial and suprafacial additions, 4n and 4n+2 systems, 1, 3- dipolar addition, Diel's Alder reaction.

Sigmatropic Rearrangements

Suprafacial and antarafacial shifts of hydrogen, Cope, Claisen and di- π methane rearrangement.

Unit IV

Retro Synthesis

Definitions of some terms used in retro synthesis- Guidelines for choosing disconnections - Guidelines - 1 to 3. One group C-X disconnections- carbonyl derivatives, alcohols and olefins.

(14 Hrs)

(14 Hrs)

(15 Hrs)

(14 Hrs)

Chemoselectivity- Introduction, Guidelines-1 to 7. Reversal of polarity (Umpolung) – Definition- Umpolung reagents (Epoxides, α – halo ketones, nitro compounds).

Protecting Groups

Introduction, protection of alcohols- principle – protecting group for alcoholsacetals/ketals, ethers, protection of carbonyl groups- principle – protecting group for carbonyl compounds- acyclic acetals and ketals, protection of carboxylic acid groups- principle – protecting group for carboxylic acid – methyl ester, protection of amino groups- principle – protecting group for amino group- formamide.

Unit V

(14 Hrs)

Organic Photochemistry

Introductory theory of light absorption, photophysical processes- Jablonski diagram, IC, ISC, fluorescence, phosphorescence. Photochemical reactions of Ketones –Norrish type I and II, Paterno Buchi reaction, Photoreduction of Ketones, Photochemistry of α , β -unsaturated ketones, Photochemical reactions of olefins – Cis-trans isomerism, Dimerization reactions, photochemistry of butadiene, Photochemistry of aromatic compounds and photooxidation.

S.No	Name of the Authors	Title of the Book	Publishers	Year of Publication
1	V.K.Ahluwalia	Organic Reaction Mechanism	Narosa Publishing House	2013, 4 th Edition
2	Jagadamba Singh & L.D.S. Yadav	Advanced Organic Chemistry	Pragati Prakasam	2007, 6 th Edition
3	Jerry March	Advanced Organic Chemistry -Reactions, Mechanism & Structure	John Wiley Publications Ltd	2008, 4 th Edition.
4	S. M. Mukherji and S.P. Singh	Reaction mechanism in organic chemistry	The macmillan company of India Ltd	1984, 1 st Edition.

Text Books:

Reference Books:

S.No	Name of the Authors	Title of the Book	Publishers	Year of Publication		
1	Mary Fieser and Louis Fieser	Reagents in Organic Synthesis	Wiley Interscience	2011, Vol.26		
2	J.N.Gurtu and R.Kapar	Organic Reactions and Reagents	S.Chand &Co Pvt., Ltd.,	1988 1 st Edition		
3	Solomons & Fryhles	Organic Chemistry	John Wiley & Sons	2010, 8 th Edition		
4	T.L. Gilchrist & R.C. Storr	Organic Reactions & Orbital Symmetry	Cambridge University Press	1975, 1 st Edition.		
5	Stuart Warren	Organic Synthesis- The Disconnection Approach	John Wiley & Sons	2004, 1 st Edition		
6	Charles H Depuy, Orville L. Chapman	Molecular reactions and photochemistry	Printice Hall	1976, 1 st Edition.		
7	Nicholas J. Turro	Modern Molecular photochemistry	The Benjamin/cummings publishing co., Inc	1978, 1 st Edition.		

Pedagogy:

Lecture by chalk and talk, power point presentation, e-content, numerical exercises, group discussion, assignment, quiz, seminar.

Course Designers:

- 1. Dr. G.Selvi
- 2. Dr. P.Amutha

Question Paper Pattern - End Semester Examination

SECTION	WORD LIMIT	MARKS	TOTAL
A - 5 x 2 Marks (No Choice)	One or Two Sentences	10	
B -5 x 6 Marks (Internal Choice at same CLO Level)	300	30	100
C – 5x 12Marks (Internal Choice at same CLO Level)	600-800	60	

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
MCE2206	PAPER VI - PHYSICAL CHEMISTRY II (Group Theory and Quantum Chemistry)	THEORY	71	4	1	5

To enable the students to

- study the atomic structure and quantum mechanics with the help of group theory
- acquire knowledge about multiplication table for point groups
- learn the application of group theory in vibrational spectroscopy and determination of hybridization types in nonlinear molecules
- understand the significance of operators and their use in quantum mechanics
- know about the wave nature of particles, derivation of Schrodinger wave equations and their applications.

Course Outcome

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	classify molecules into point groups	K2
CO2	construct the character table for point groups	K5
CO3	predict the IR and Raman active vibration modes for molecules and type of hybridization in nonlinear molecules based on group theory	K6
CO4	relate uncertainty and correspondence principles for the derived wave functions from Schrodinger wave equations	К3
CO5	distinguish radial/probability functions and curves and judge the shapes of s and p orbitals using quantum mechanical approach	K4,K6
CO6	generalize the HMO treatment of simple and conjugated π electron systems	K5

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Н	Н	Н	М	М	М	М
CO2	Н	Н	Н	М	М	М	М
CO3	Н	Н	Н	М	Н	М	М
CO4	Н	Н	Н	М	М	М	Н
CO5	Н	Н	Н	М	Н	М	Н
CO6	Н	Н	М	М	Н	L	Н

PAPER VI- PHYSICAL CHEMISTRY II (MCE2206)

(Group Theory & Quantum Chemistry)

(71 Hrs)

Unit I

(14 Hrs)

Symmetry Elements and Symmetry Operations

Definition of identical and equivalent elements – Configurations – Symmetry operations and symmetry elements – Rotation – Axis of symmetry – Reflections – Symmetry planes – Inversion, centre – improper rotations – Rotation- Reflection axis – Effect of performing successive operations (Commutative and non-commutative)- Inverse operations.

Groups and their basic properties

Definition of a group – Basic properties of a group – Definition of Abelian group – Isomorphic group – Similarity transformation and classes – Group multiplication tables-Symmetry classification of molecules into point groups (Schoenflies symbol only)- Difference between point group and space group – Various symmetry operations of tetrahedral point groups. **Matrices**

Definition of matrix, square , diagonal , null , unit, row , column , symmetric , skew symmetric and conjugate matrices – Matrix multiplication (Commutative and non-Commutative) determination of inverse of a matrix, block multiplication of matrices – Addition and subtraction of matrices – Matrix notations for symmetry operations of C_{2v} and C_{3v} point groups (use of vectors) construction of character tables for C_{2v} and C_{3v} point groups.

Unit II

(14 Hrs)

Reducible and Irreducible representations

Definition of reducible and irreducible representations – Irreducible representation as orthogonal vectors – Direct product rule – The Great Orthogonality Theorem and its consequences (statement only, proof not needed)- Determination of the characters for irreducible representation of C_{2v} and C_{3v} point groups – using the orthogonality theorem – Calculation of binary co-ordinates in the character tables for C_{2v} and C_{3v} point groups – Calculation of character values of reducible representations per unshifted atom for each type of symmetry operation – Determination of total cartesian representation – Determination of direct sum from total cartesian representation. Type of hybridization of atomic orbitals in acetylene, CH_4 and $[PtCl_4]^{2^-}$.

Group theory and Vibrational spectroscopy

Vibrational modes as basis for group representation – Symmetry selection rules for IR and Raman spectra (Mutual Exclusion Principle – Classification of vibrational modes).

Unit III

(14 Hrs)

Birth and Postulates of Quantum Mechanics

Failure of classical mechanics- Black body radiation, photo electric effect and Compton effect. The need for quantum mechanics.

Functions - Real, complex, odd, even, orthogonal and normalized functions.

Operator - linear and non-linear, differential, Hermitian, Hamiltonian, momentum (linear and angular) commutator (Theorems) and non- commutators, Eigen functions and eigen values.

Postulates of quantum mechanics -Statements and Discussion

Schrodinger Wave Equations - (Time dependent and time independent); Requirements of the acceptable wave function.

Unit IV

(14 Hrs)

Quantum Mechanical models/ Applications

Particle in 1D box- quantization of energy, normalization of wave function, orthogonality/ orthonormal set of particle.Particle in 3D box- separation of variables, degeneracy Harmonic Oscillator-wave equation and its solution for diatomic molecule. Anharomonicity. Rigid Rotor- wave equation and its solution for diatomic molecule.

Unit V

(15 Hrs)

Application of Quantum Mechanics to Hydrogen and Poly electron atom

H- atom (H – like species) - wave equation, separation of variables (solving of radial equation is not needed but nature of the solution to be given). Radial wave function, Radial distribution curves, Probability wave function, Probability distribution curves, Shapes of s and p orbitals only. Approximation methods- Need for approximation. Perturbation and Variation methods (1st order only) - Applications of the methods to Helium atom. Born-Oppenheimer Approximation method; Hartree- Fock self-consistent field method. Hydrogen molecular ion- Treatment of the ground state by LCAO-MO method. Helium atom- Electron spin, Pauli Exclusion Principle, Slater determinants – Approximate wave function of many electron atoms.

Electronic structure of conjugated systems- Huckel method applied to ethylene, allyl systems, butadiene and benzene.

Text Books:

S.No	Name of the Authors	Title of the Book	Publishers	Year of
				Publication
1	A.K Chandra	Quantum Chemistry	Tata Mc Graw	2010
			Hill Publications	
2	R.K. Prasad	Quantum Chemistry	New Age	2001, 4 th
			International	Edition
			Publishers	
3	K.V.Raman	Group Theory and its	Tata McGraw-	2002
		Applications to	Hill Publications	
		Chemistry		

Reference Books:

S.No	Name of the Authors	Title of the Book	Publishers	Year of
				Publication
1	F.A. Cotton	Chemical Applications	Wiley	2013
		of Group Theory	Publications Ltd	
2	Donald. A. Mc.	Quantum Chemistry	Viva Books	reprint 2011
	Quarrie		Publications	
3	Ira. N. Levine	Quantum Chemistry	Pearson	2007, 6 th Edition
			Publications	

Pedagogy:

Lecture by chalk and talk, power point presentation, e-content, numerical exercises, group discussion, assignment, quiz, seminar.

Course Designers:

- 1. Dr.N.Muthulakshmi Andal
- 2. Dr.P.Amutha

Question Paper Pattern - End Semester Examination

SECTION	WORD LIMIT	MARKS	TOTAL
A - 5 x 2 Marks (No Choice)	One or Two Sentences	10	
B -5 x 6 Marks (Internal Choice at same CLO Level)	300	30	100
C – 5x 12Marks (Internal Choice at same CLO Level)	600-800	60	

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
MCE2207	PAPER- VII – SPECTROSCOPY	THEORY	56	4	-	4

To enable the students to

- understand the principles and instrumentation of various spectroscopic techniques
- study the effects of solvents and molecular parameters on UV and IR absorptions
- learn the applications of NMR and ESR spectra
- determine the structure of compounds from various spectral data

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	apply and evaluate the UV/Vis spectroscopy as a qualitative and quantitative method	K3, K6
CO2	analyze the vibrations of molecules and identify the functional group present in it	K1, K4
CO3	predict the structure of compound using 1D and 2D NMR techniques	K6
CO4	assess the mass to charge ratio for the sample under test and to propose the fragmentation pattern	K5, K6
CO5	relate the g factor, nuclear spin, and hyperfine coupling constant with structure of the complexes	К2

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Н	Н	Н	Н	Н	Н	Н
CO2	Н	Н	Н	М	Н	Н	Н
CO3	Н	Н	Н	М	Н	Н	Н
CO4	Н	Н	М	М	Н	Н	Н
CO5	Н	Н	М	М	Н	Н	Н

Unit I

UV and Visible Spectroscopy

Electronic excitation, Origin of different bands - Intensity of bands - Selection rules, Laws of photometry, Instrumentaion, Correlation of electronic absorption with molecular structure, Simple chromophoric groups, Factors affecting transitions - Solvent effect, effect of steric hindrance, effect of conjugation. Woodward's rule for calculating absorption maximum in conjugated dienes, polyenes, α , β - unsaturated carbonyl compounds, benzenoid systems. Applications of UV spectroscopy.

Unit II

Infrared Spectroscopy

Principle, the modes of stretching and bending vibrations, bond properties and absorption trends, Instrumentation- Description of double beam IR spectrophotometer, IR spectra of polyatomic molecules, Factors affecting the vibrational frequencies, Applications of IR spectroscopy, Intra and intermolecular hydrogen bonding, Finger Print region, Far IR region, Metal- ligand stretching vibrations, Application of IR spectroscopy in differentiation of linkage isomers – cyano and isocyano, nitro and nitrito, thiocyanato and isothiocyanato complexes.

Unit III

Proton NMR Spectroscopy

Nuclear spin states, nuclear magnetic moments, absorption of energy, ¹H chemical shift, factors affecting chemical shifts, spin-spin splitting, (n+1rule),coupling constant - deuterium exchange , first order and non-first order spectra- a review. Chemical and magnetic equivalence, shift reagents, NMR instrumentation, applications of NMR spectroscopy. NMR spectrum of ethanol, acetaldehyde, 1,1,2-trichoroethane, cinnamic acid, ethyl acetate, furfuraldehyde and α -chloro propionic acid

Unit IV

Carbon -13 NMR Spectroscopy

¹³C nucleus, chemical shifts, spin- spin splitting, double resonance techniques - homonuclear and heteronuclear decoupling, broad band decoupling, off resonance decoupling, ¹³C relaxation mechanisms.

(11 Hrs)

(11 Hrs)

(12 Hrs)

(11 Hrs)

FT and 2D NMR Spectroscopy

Principle of FT-NMR, FID. Introduction of 2D techniques: COSY and Hetero – COSY.

ESR Spectroscopy

Theory, derivative curves, 'g' shift, hyperfine splitting, zero field splitting and Kramer's degeneracy, factors affecting the magnitude of the 'g' values, identification of free radicals, EPR spectra of inorganic compounds.

Unit V

Mass Spectrometry

Introduction, principle, ion production (EI, CI, FD and FAB), presentation of spectral data, molecular ions, meta stable ions, molecular ion peak. Nitrogen rule, isotopic abundance analysis. Fragmentation process, symbolism (scission only), even and odd electron ions, scission with rearrangement. Retro Diels Alder rearrangement, Mc Lafferty rearrangement, double bond and/ or ring equivalents implied from a formula. Fragmentation associated with functional groups – aliphatic compounds, aldehydes, ketones, carboxylic acids, esters, amides, alcohols, thiols, amines, ethers, sulphides and halides, aromatic compounds, elimination due to ortho groups.

Text Books:

S.No	Name of the Authors	Title of the Book	Publishers	Year of Publication
1	Jag Mohan	Organic Spectroscopy	Narosa Publishing	2013
			House	
2	P.S.Kalsi	Spectroscopy of Organic	New Age	2014, 6 th Edition
		Compounds	International (P)	
			Ltd	
3	Y. R Sharma	Elementary Organic	S. Chand	2012, 4 th Edition
		Spectroscopy	Publications	
4	William Kemp	Organic Spectroscopy	Palgrave	2002
			Publications	
5	H. Kaur	Spectroscopy	Pragati Prakashan	2015, 10 th Edition.
			Publications	

Reference Books:

S.No	Name of the Authors	Title of the Book	Publishers	Year of Publication
1	R.S. Drago	Physical Methods in	East West Pvt.	1978, 1 st Edition.
		Inorganic Chemistry	Ltd	
2	D. L. Pavia, G.M.	Spectroscopy	Brooks/Cole	2011, 5 th Edition.
	Lampman, G.S.Kriz and		Publications	
	James R.Vyvyan			
3	R.M. Silverstein, F.X.	Spectrometric Identification	John Wiley	2009, 6 th Edition
	Webster	of Organic Compounds	Publications	
4	M. S. Yadav	Molecular Spectroscopy	Arise Publishers	2011, 1 st Edition.
			& Distributors	

Pedagogy:

Lecture by chalk and talk, power point presentation, e-content, numerical exercises, group discussion, assignment, quiz, seminar.

(11 Hrs)

Course Designers:

1. Dr. D. Nalini

2. Dr. P. Amutha

End Semes	ster Examinatio	on	
SECTION	WORD LIMIT	MARKS	
- 5 x 2 Marks (No Choice)	One or Two Sentences	10	

Question Paper Pattern

C – 5x 12Marks (Internal Choice at

same CLO Level)

SECTION	WORD LIMIT	MARKS	TOTAL
A - 5 x 2 Marks (No Choice)	One or Two Sentences	10	
B -5 x 6 Marks (Internal Choice at same CLO Level)	300	30	100

600-800

60

Course Number	Course Name	Category	L	Т	Р	Credit
MCP19A1	IDC –CLINICAL MICROBIOLOGY & BIOCHEMISTRY	THEORY	60	-	I	4

To enable the students to

- understand the principles of clinical chemistry
- gain the importance of hypertension and hypotension
- understand the principles and the concepts underlying clinical laboratory tests in clinical chemistry
- differentiate the blotting technique and vaccination types
- acquire knowledge on basic mechanisms involved in the causation and treatment of common disease and their influence on clinical presentation and therapy

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	differentiate the clinical specimens	K ₃
CO2	classify the composition of blood, Perform analysis of chemical analytes in blood and other body fluids	K ₂ ,K ₃
CO3	calculate the test results and convert them to form meaningful in patient assessment	K ₃
CO4	Compare and contrast the different types of blotting techniques and vaccination.	K ₆
CO5	correlate laboratory results with infectious diseases processes	K_4

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Н	М	Н	М	Н	Н	М
CO2	Н	Н	Н	Н	L	L	М
CO3	Н	Н	М	Н	М	М	М
CO4	Н	М	М	М	Н	Н	М
CO5	Н	М	М	Н	Н	Н	Н

INTER DISCIPLINARY COURSE (For M. Sc., Chemistry/ Botany Students)

CLINICAL MICROBIOLOGY & BIOCHEMISTRY (MCP19A1) (60 Hrs)

(12 Hrs)

Unit I

Clinical Microbiology

Clinical specimens –Collection- needle aspiration, Incubation, Catheter; handling, transport. Isolation of microbes from specimens-selective media, differential media, enrichment media, characteristic media. Identification of microbes (virus, bacteria, fungi and parasites) through morphological and biochemical characteristics.

Unit II

(12Hrs)

Principles of Clinical Biochemical Analysis

Basis of analysis of body fluids for diagnostic prognostic and monitoring purposes.

Blood Analysis

Composition of blood, blood grouping & matching, physiological function of Plasma protein, role of blood as oxygen carrier, blood pressure - Hypertension & hypotension, coagulation of blood, Anaemia – causes & control .Urea determination- the urease method, estimation of bile pigment in serum, estimation of total protein in serum, estimation of total proteins and albumin based on biuret method and BCG method.

Unit III

Clinical Chemistry

Determination of Glucose in Serum by Folin & Wu's method, Determination of Serum Cholesterol - Sackett's method for total cholesterol. Diagnostic test for Sugar in urine. Test for salt in serum, test for chlorides. Detection of cholesterol in urine, detection of diabetes. Typical reference ranges for biochemical analyst Viz, sodium, potassium, urea, creatinum, AST, ALT, AP and cholesterol and their significance. Biological role of sodium, potassium, calcium, iodine, copper and zinc.

Unit IV

Electrophoresis, Blotting and Vaccination

Principles, Techniques: southern, western and northern blotting. Vaccines and immunizations: Active immunization, passive immunization, Type of vaccines-whole organism vaccines, purified macromolecules as vaccines, Recombinant –vector vaccines, DNA vaccines.

(12Hrs)

(12Hrs)
Unit V

Common Diseases & their Treatments

Insect borne diseases: Malaria, Filarisis & Plague. Air Borne diseases: Diphtheria, Whooping cough, Influenza, Measles mumps, Tuberculosis, Water borne diseases: Cholera, Typhoid, & Dysentry. Common disease of the digestive systemjaundice, respiratory system- asthma, nervous system- epilepsy. Some other common diseasespiles, leprosy. First aid for accidents. Common poisons & their antidotes - acid poisoning, alkali poisoning, Poisoning by disinfectants hallucinogens.

Toxic effects of metals

Toxicity of Iron, Copper, Arsenic, Mercury, Lead, Cadmium, Aluminium & Radionuclide & Wilson's disease.

Text Books:

S.No	Author	Title	Publishers	Year of
				publication
1	Asim. K. Das	Bioinorganic chemistry 1 st edn.	Books & Allied Pvt Ltd.	2007
2	Jayashree Ghosh	Textbook of Pharmaceutical Chemistry3 rd edn	S. Chand & Co	2003
3	Jayashree Ghosh	Fundamental concepts of Applied Chemistry1 st edn	S. Chand & Co	2006
4	Rana, S.V.S	Bio Techniques. Theory and Practice.	Rastogi Publications, Meerut.	2005
5	Ambika Shanmugam	Fundamentals of Biochemistry for Medical Students	Nagaraj and Company Private Limited	2005
6	Mallikarjuna Rao, N	Medical Biochemistry 6 th edn.	New Age International (P) Limited, Publishers	2006

Reference Books:

S.No	Author	Title	Publishers	Year of publication
1	Lensing M.Prescott, John P, Harley, Donald A Klein.	Microbiology,6 th Edition,	Tata mc Graw Hill, New Delhi	2005
2	Keith Wilson, John Walker.	Principles and Techniques of Biochemistry and Molecular Biology, 6 th Edn.	Cambridge University Press	2008
3	By Douglas B. Lowrie, Robert G. Whalen	DNA vaccines-methods and protocols	Humana press, Totowa, New Jersey	2000

Pedagogy:

Lecture by chalk and talk, power point presentation, e-content, simulation, numerical exercises, group discussion, assignment, quiz, seminar.

Course Designers:

- 1. Dr.N.Shyamala Devi
- 2. Dr.N.Arunadevi
- 3. Dr. K. Gajalakshmi
- 4. Dr.K .S. Tamilselvi

Question Paper Pattern

End Semester Examination

Section	Marks	Total
A - 5X5 marks (Either or)	25	
B – 5 X15marks (Either or)	75	100

Course Number	Course Name	Category	L	Т	Р	Credit
MCE21P1	PRACTICAL I - ORGANIC CHEMISTRY PRACTICAL – I	PRACTICAL	-	-	120	4

To enable the students to

- separate two components in an organic mixture
- identify the separated components by qualitative tests
- determine the boiling point / melting point of components
- prepare organic compounds

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	separate organic mixtures by solvent extraction	K4
CO2	analyze organic compounds	K4
CO3	develop skills in the synthesis of organic compounds	K5
CO4	determine boiling point /melting point	K6

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Н	Н	Н	Н	Н	Н	Н
CO2	Н	Н	Н	L	Н	Н	Н
CO3	Н	Н	Н	L	Н	Н	Н
CO4	Н	Н	Н	Н	Н	Н	Н

PRACTICAL I - ORGANIC CHEMISTRY PRACTICAL – I (MCE21P1) (120 Hrs)

1. Qualitative Analysis:

Analysis of two component mixtures – Separation, identification of components and determination of melting point/ boiling point of the components.

2. One stage preparations and purification by recrystallization technique

- (i) m-dinitrobenzene from Nitrobenzene
- (ii) Resacetophenone from Resorcinol
- (iii) Tribromoaniline from Aniline
- (iv) Diazoaminobenzene from Aniline
- (v) Anthranilic acid from Pthalimide
- (vi) Methyl orange from sulphanilic acid

3. Characterization of any two of the above compounds by IR spectra

Note: A minimum of five organic mixtures should be done by each student.

Text Book: LAB MANUAL - Prepared by Faculty, Department of Chemistry, PSGR Krishnammal College for Women

Reference books:

S.No	Name of the Authors	Title of the Book	Publishers	Year of Publication
1	Arthur I. Vogel	Elementary Practical Organic Chemistry (part 2)Qualitative Organic Analysis	Pearson Education	2011, 2 nd Edition.
2	F.G. Mann & B.C. Saunders	Practical Organic Chemistry	Pearson Education	2009, 4 th Edition

Pedagogy: Demonstration and hands on practicals

Course Designers:

- 1. Dr.D.Nalini
- 2. Dr.E.Kayalvizhy
- 3. Dr.G.Sathya Priyadarshini

Course Number	Course Name	Category	L	Т	Р	Credit
MCE21P2	PRACTICAL II – INORGANIC CHEMISTRY PRACTICAL-I	PRACTICAL	-	I	120	4

To enable the students to

- separate the common and rare cations in a mixture
- characterize two common and two less familiar cations
- estimate quantitatively magnesium, nickel and zinc by complexometry
- prepare inorganic complexes

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	separate common and rare cations	К3
CO2	analyse and report cations in a mixture	K4
CO3	estimate the metal ions in complexes	K5
CO4	develop skills in the synthesis of inorganic complexes	K5, K6
CO5	Interpret IR spectra of metal complexes	K5

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Н	Н	Н	Н	Н	Н	Н
CO2	Н	Н	Н	Н	Н	Н	Н
CO3	Н	Н	Н	Н	Н	Н	Н
CO4	Η	Н	Н	Н	Н	Н	Н
CO5	Н	Н	Н	Н	Н	Н	Н

PRACTICAL II - INORGANIC CHEMISTRY PRACTICAL – I (MCE21P2) (120 Hrs)

1. Qualitative Analysis

Qualitative Analysis employing semi micro methods & spot tests of mixtures of common cations & ions of the following less familiar elements - Molybdenum , Thallium, Tungsten, Selenium, Tellurium, Cerium, Thorium, Titanium, Zirconium, Vanadium, Beryllium, Uranium & Lithium.

2. Titrimetry

Complexometric titrations using EDTA - Estimations of Magnesium, Nickel & Zinc.

3. Preparation of Inorganic Complexes

- i. Tris(thiourea)copper (I) chloride
- ii. Potassium tris(oxalato)ferrate(III)
- iii. Hexammine cobalt(III) chloride
- iv. Ammonium hexachlorostannate(IV)
- v. Tetramminecopper(II) sulphate

4. Characterization of any two of the above complexes by IR spectra

Text Books: LAB MANUAL - Prepared by Faculty, Department of Chemistry, PSGR Krishnammal College for Women

Reference books:

S.No	Name of the Authors	Title of the Book	Publishers	Year of Publication
1	Arthur I.Vogel	Macro & Semimicro Qualitative Inorganic Analysis	Orient Long man's Ltd	1968, 1 st Edition
2	G.Palmer	Experimental Inorganic Chemistry	Cambridge University Press	1964, 3 rd Edition.

Pedagogy: Demonstration and hands on practicals

Course Contents and Lecture Schedule

Course Designers:

- 1. Dr.P. Kanchana
- 2. Dr.G.Selvi

Course Number	Course Name	Category	L	Т	Р	Credit
MCE21P3	PRACTICAL III - PHYSICAL CHEMISTRY PRACTICAL - I	PRACTICAL	-	-	120	4

To make the students to

- understand the principle and to carry out the potentiometric titrations.
- determine the pH and pKa values of buffers and acids
- determine the molecular weight of solutes.
- construct the Phase diagram of two components systems.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement			
CO1	set up a pH electrode to prepare for a potentiometric titration	K_6		
CO2	examine the strength of the solutions and Ka values by potentiometry	K_4		
CO3	calculate the molecular weight of chemical compounds from $K_{\rm f}$ values by Rast micro method	K_4		
CO4	construct and analyze Phase diagrams	K_5, K_6		

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Н	Н	Н	Н	М	М	М
CO2	Н	Н	Н	Н	Н	Н	Н
CO3	Н	Н	Н	М	М	М	М
CO4	Н	Н	Н	М	Н	Н	Н

PRACTICAL III - PHYSICAL CHEMISTRY PRACTICAL – I (MCE21P3) (120Hrs)

- 1. Molecular weight determination by Rast Micro Method
- 2. Phase study: Simple Eutectic System & Compound Formation
- 3. Phase Study: System with Compound Formation
- 4. Determination of Transition Temperature of Salt Hydrate
- 5. Viscosity: Variation of viscosity of liquids with temperature
- 6. Electromotive Force:
 - (i) Determination of Standard Potentials (Cu, Zn, Ag)
 - (ii) Evaluation of Thermodynamic Quantities from EMF Data (Daniel Cell)
 - (iii)Determination of pH & pKa values using Hydrogen & Quinhydrone electrodes
- 7. Potentiometric Titrations:
 - i. Titration of HCl vs NaOH
 - ii. Titration of mixture of acids against a strong base
 - iii. Titration of CH₃COOH vs NaOH
 - iv. Redox titrations:
 - (a) Titration of Ferrous ammonium sulphate against Potassium dichromate
 - (b) Titration of Potassium iodide against Potassium permanganate
 - v. Determination of solubility product of a sparingly soluble salt (Concentration Cell & Chemical Cell)
 - vi. Precipitation titrations:
 - (a) Estimation of KI by titration with $AgNO_3$ using KCl as standard
 - (b) Titration of mixture of halides against AgNO₃ solution

Text Books:

LAB MANUAL-Prepared by Faculty, Department of Chemistry, PSGR Krishnammal College for Women

Reference books:

S.No	Name of the	Title of the Book	Publishers	Year of	
	Authors			Publication	
1	P.D. Lowitt	Findlay's Practical	Longman	1072 Oth Edition	
1	D.F. Leviu	Physical Chemistry	Publications	1975, 9 Euluoli	
2	C Dolmor	Experimental Physical	Cambridge	1064 1 st Edition	
2	G.Faimer	Chemistry	University Press	1904, 1 Euliioii	
2	B. Viswanathan &	Practical Physical	Vive Pools	2000 2 rd Edition	
3	P.S. Raghavan	Chemistry	VIVA DOOKS	2009,5 Edition	

Pedagogy: Demonstration and hands on practicals

Course Designers

- 1. Dr.D.Nalini
- 2. Dr.E.Kayalvizhi
- 3. Dr.G.Sathyapriyadarshini

Course Number	Course Name	Category	L	Т	Р	Credit
MCE2208	PAPER-VIII ORGANIC CHEMISTRY-III (Chemistry of Natural Products)	THEORY	73	2	-	5

To enable the students to

- elucidate structures of terpenoids, alkaloids & steroids, flavones and anthocyanins
- acquire knowledge about the structures of nucleic acids and their biological functions
- understand the synthesis and reactivity of heterocyclic compounds.

Course Outcomes

On the successful completion of the course, students will be able to

СО	CO Statement	Knowledge
Number		Level
CO1	define and classify terpenes, alkaloids, steroids, flavones and anthocyanins	K1
CO2	identify the functional groups and analyse the structures of terpenoids, alkaloids, steroids, flavones and anthocyanins	К2
CO3	sketch out the synthesis of terpenoids, alkaloids, steroids, flavones and anthocyanins	К3
CO4	integrate the chemistry of nucleic acids and their biological functions	K4
CO5	compare and discuss the reactivity of O, N and S heterocycles	K5

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Н	М	Н	L	М	Н	Н
CO2	Н	Н	Н	М	Н	Н	Н
CO3	Н	Н	Н	М	Н	Н	Н
CO4	Н	Н	Н	L	М	Н	Н
CO5	Н	Н	Н	L	Н	Н	Н

46

Paper-VIII Organic Chemistry-III (MCE2208)

Chemistry of Natural Products (73Hrs)

Unit I

Terpenes

Isolation & classification of terpenes.Structural elucidation & synthesis of Zingiberine, Eudesmol, Abietic acid, Caryophyllene, Cadenine, Camphor & Santonin.

Unit II

Steroids

Introduction-structural elucidation & synthesis of cholesterol, ergosterol, vitamin D, Male sex hormones- androsterone& testosterone, Female sex hormones- Oestrone, equilenin, Progesterone.

Unit III

Alkaloids

Introduction-structural elucidation & synthesis of Reticuline, Morphine, Reserpine, Quinine, Atropine, yohimbine&glaucine.

Unit IV (15Hrs)

Nucleic Acids

Structures of RNA & DNA, Structure of nuclecosides - bases present - point of linkage of base & sugar - structure of nucleotides - pairing of bases-biological functions of RNA & DNAgenetic continuity- role of RNA in protein synthesis.

Heterocyclic Compounds

Synthesis and reactivity of common heterocyclic compounds containing one or two heteroatoms - (O, N, S) Pyrazole group, Imidazole group, Oxazole group and Thiazole group.

Unit V

Flavones & Anthocynanins

Structures, synthesis & reactions of Flavones, Isoflavones&Flavanols- Apigenin, Diadzein, Quercetin. Anthocynanins - Cyanin chloride, Pelargonin chloride, Delphinin chloride, Peonin chloride- Structures & synthesis. Colour reactions of Anthocyanins.

(14Hrs)

(14Hrs)

(15Hrs)

(15Hrs)

Text Books:

S.No	Authors	Title	Title Publishers	
1.	O.P. Agarwal	Organic Chemistry Natural Products, Vol.I	Goel Publishers	2013, 42 th Edn.
2.	O.P. Agarwal	Organic Chemistry Natural Products, Vol.II	Goel Publishers	2014, 41 th Edn.
3.	I.L. Finar	Organic Chemistry Vol.II	Pearson Education	2011, 5 th Edn

Reference Books:

S.No	Authors	Title	Publishers	Year of Publication
1.	V.K. Ahluwalia	Chemistry of Natural Products	Ane Books Pvt. Ltd	2006, 1 st Edn.
2.	P.S. Kalsi	Chemistry of Natural Products	Kalyani Publishers	2001 Reprint, 1 st Edn.
3.	I.L. Finar	Organic Chemistry Vol.I	Pearson Education	2007 Reprint, 6 th Edn.
4.	K. Nakanishi	Natural Products Chemistry Vol. I & II	Academic Press, Inc	1975, 1 st Edn.

Pedagogy: Lecture by chalk and talk, power point presentation, e-content, group discussion, assignment, quiz, seminar.

Course Designers:

1. Dr. G. Selvi

2. Dr. N. Shyamaladevi

End Semester Examination – 100 Marks

SECTION	WORD LIMIT	MARKS	TOTAL
A - 5 x 2 Marks (No Choice)	One or Two Sentences	10	
B -5 x 6 Marks (Internal Choice at same CLO Level)	300	30	100
C – 5x 12 Marks (Internal Choice at same CLO Level)	600-800	60	

Course Number	Course Name	Category	L	Т	Р	Credit
MCE2209	PAPER-IX Elective I - COORDINATION & ORGANOMETALLIC CHEMISTRY	THEORY	58	2	-	4

To enable the students to

- understand the theories of bonding, reactions in complexes & spectral applications
- gain knowledge in term symbols and electronic spectra of complexes
- acquire knowledge regarding organometallic complexes and their applications as catalysts for chemical reactions.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	define and classify the types of ligands, reaction mechanism of metal complexes	K1
CO2	infer the isomerism of coordination compounds, bonding characteristics using VBT, CFT theory	К2
CO3	examine the spectra of complexes using TS and Orgel diagrams, mechanisms for reactions of transition metal complexes	К3
CO4	appraise the preparation, properties and uses of metal carbonyls, charge transfer complex and trans effect	K4
CO5	apply coordination complexes as catalyst for reactions, evaluate the application of Mossbauer spectroscopy in characterization	K5

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Н	Н	Н	М	М	Н	Н
CO2	Н	Н	Н	М	Н	Н	Н
CO3	Н	Н	Н	М	Н	Н	Н
CO4	Н	Н	Н	М	Н	Н	Н
CO5	Н	Н	Н	М	Н	Н	Н

Paper – IX Elective I -Coordination and Organometallic Chemistry [MCE2209] (58Hrs)

Unit I

Coordination Chemistry

Nomenclature of coordination compounds – isomerism, structural & stereoisomerism – octahedral & square planar complexes. Bonding in complexes-Valence bond theory, Crystal field theory- Crystal field effects in tetrahedral, octahedral & square-planar symmetries. CFSE-Weak & strong field effects-Spectrochemical Series. Magnetic Properties - I row transition metal complexes : comparison of magnetic properties of Oh, Td & square planar Fe(II), CO(II), Ni(II) & Cu(II) complexes. Applications of CFSE. Molecular Orbital Theory- Based on group theoretical approach, M.O diagrams of octahedral complexes with/without pi-bonding-Experimental evidence for pi-bonding.

Unit II

Electronic Spectra of Complexes

Characteristics of d-d transitions-selection rules. Energy level diagrams – Orgel diagrams. Sugano – Tanabe diagrams (only for d^2 , d^3 & d^6 ions), Jahn-Teller tetrahedral distortions. Spin-orbit coupling.Nephelauxetic effect. Charge transfer spectra.

Mossbauer Spectroscopy: Principle, Applications in the characterization of Fe &Sn complexes

Unit III

Reactions of Complexes

Inert and labile complexes- Substitution reactions in square planar and octahedral complexes, S_N^{-1} CB mechanism, complementary/non-complementaryreacitons. Trans effect-mechanism and applications. Theories of trans effect. Oxidation – reduction reactions – through atom/group transfer, electron transfer. Mechanism of electron transfer reactions in solution phase – outer sphere and inner sphere mechanism.

Unit IV

Organometallic Chemistry I

Basics of Organometallic Chemistry –Hapticity- Classification of ligands and its limitations- 18 e⁻ rule, Metal carbonyls- Preparation, Structure, bonding and reactions. Metal Nitrosyls – Preparation and Bonding, Dinitrogen complexes- Metal alkenes – Zeise salt – bonding,

(11Hrs)

(12Hrs)

(12Hrs)

(11 Hrs)

Cyclopentadienyl complexes (Ferrocene) – Preparation and properties.Concept of Isolobality and Isolobal analogues- ML₅, ML₄, ML₃ Fragments- Examples- Mn(CO)₅, Fe(CO)₄, Co(CO)₃.

Unit-V

(**12Hrs**)

Organometallic Chemistry II

Organometallic reactions - Co-ordinative unsaturation, oxidative addition reaction, Reductive elimination & β – elimination. Insertion reaction, Hydrogenation of alkenes (Wilkinson catalyst), Hydroformylation (Oxo process), Oxidation of Olefins (Wackers process), Carbonylation of Methanol (Monsanto Process), Polymerization of Olefins (Zeigler –Natta catalysts) Metal clusters– Introduction to metal carbonyl cluster - Wade's rule. WGS (Water Gas Shift) – Synthesis.Cyclo-oligomerisation of acetylene (Repps and Wilki's Catalyst)

Text Books:

S.No	Authors	Title	Publishers	Year of Publication
1.	James. E. Huheey, Ellen. A. Keiter, R. Keiter, O.K. Medhi	Inorganic Chemistry- Principles of Structure & Reactivity	Pearson Education	2011, 9 th Edn.
2.	R.C. Mehrotra& A. Singh	Organometallic Chemistry- A Unified Approach	New Age Publishers	2007, 2 nd Edn.
3.	B.R.Puri, L.R.Sharma& K.C. Kalia	Principles of Inorganic Chemistry	Milestone Publishers and Distributors	2013, 31 st Edn.
4.	Wahid.U.Malik, G.D.Tuli&R.D.Madan	Selected Topics in Inorganic Chemistry	S.Chand& Co.	2010, 30 th Edn.

Reference Books:

S.No	Authors	Title	Publishers	Year of Publication
1.	F.A. Cotton & G. Wilkinson	Advanced Inorganic Chemistry	Wiley Interscience Publishers	2009, 6 th Edn.
2.	J.D.Lee	Concise Inorganic Chemistry	Chapman and Hall	2009, Reprint, 5 th Edn.

Pedagogy: Lecture by chalk and talk, power point presentation, e-content, group discussion, assignment, quiz, seminar.

Course Designers:

1. Dr. P. Kanchana

2. Dr. P. Amutha

End Semester Examination – 100 Marks

SECTION	WORD LIMIT	MARKS	TOTAL
A - 5 x 2 Marks (No Choice)	One or Two Sentences	10	
B -5 x 6 Marks (Internal Choice at same CLO Level)	300	30	100
C – 5x 12 Marks (Internal Choice at same CLO Level)	600-800	60	

Course Number	Course Name	Category	L	Т	Р	Credit
MCE2210	PAPER – IX Elective II – MEDICINAL CHEMISTRY (Optional)	THEORY	58	2	-	4

To enable the students to

- learn about the drug metabolism & their activity
- understand about Cancer chemotherapy and Cardiovascular Drugs
- gain knowledge about local anti-infective drugs

Course Outcomes

On the successful completion of the course, students will be able to

СО	CO Statement	Knowledge
Number		Level
CO1	explain the procedures followed in drug design and development of QSAR	K1
CO2	interpret pharmacokinetic parameters and appraise the significance of drug metabolism in medicinal chemistry	К2
CO3	classify and integrate the synthesis of antineoplastic drugs to cancer chemotherapy	К3
CO4	predict the mechanism of action of cardiovascular drugs	K4
CO5	evaluate the general mode of action and synthesis of local anti-infective drugs	K5

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Н	Н	М	L	М	М	Н
CO2	Н	Н	М	L	М	М	Н
CO3	Н	Н	М	L	М	М	Н
CO4	Н	Н	М	L	М	М	Н
CO5	Н	Н	М	L	М	М	Н

PAPER – IX Elective II – Medicinal Chemistry (Optional) [MCE2210] (58Hrs)

Unit I

(11 Hrs)

Introduction to Drugs

Sources, absorption, roots of administration of drugs, biotransformation, mechanism of action.Factors prolonging action, excretion & toxicity. Development of new drugs, procedures followed in drug design, concepts of lead compound & lead modification, concepts of prodrugs& soft drugs, Structure Activity Relationship (SAR), factors affecting bioactivity, resonance, inductive effects, isosterism, bio isosterism, and spatial considerations. Theories of drug activity: Occupancy Theory, Rate Theory, induced fit theory. Quantitative Structure Activity Relationship(QSAR) - History & development. Concepts of drug receptors.Elementary treatment of drug receptor interactions.

Unit II

(12Hrs)

Pharmacokinetics

Introduction to drug absorption, disposition, elimination using pharmacokinetics, important pharmacokinetic parameters in defining drug disposition & in therapeutics.Uses of pharmacokinetics in drug development process.

Pharmacodynamics

Introduction, elementary treatment of enzyme stimulation, enzyme inhibition, sulphonamides, membrane active drugs, drug metabolism, xenobiotics, biotransformation, significance of drug metabolism in medicinal chemistry.

Unit III

(**12Hrs**)

Antineoplastic Agents

Introduction, classification, cancer chemotherapy, special problems, role of alkylating agents & anti metabolites in treatment of cancer.Carcinolytic antibiotics & mitotic inhibitors.Synthesis of mechlorethamine, cyclophosphamide, melphalan, uracil, mustards & 6-mercaptopurine.Recent developments in cancer chemotherapy.Hormone & Natural products.

54

Unit IV

Cardiovascular Drugs

Introduction - classification of cardiac glycosides, antiarrhythmic drugs, therapeutic uses. Antihypertensive agents, Vasopressor Drugs – Mechanism of Action.Synthesis of verapamil, methyldopa.

Unit V

Local Anti-infective Drugs

Introduction & general mode of action.Synthesis of sulphonamides, furazolidone, nalidixic acid, ciprofloxacin, norfloxacin, dapsone, amino salicylic acid, isoniazide, ethionamide, ethambutal, fluconazole, econozole, griseofulvin, chloroquin&primaquin.

Text Books:

S.No	Authors	Title	Publishers	Year of Publication
1.	AshutoshKar	Medicinal Chemistry	New Age International	2007, 4 th Edn.
2.	R.S Satoskar&S.D.Bharkar	Pharmacology &PharmatherapeuticsVol 1 & 2	Popular Prakashan	2015, 24 th Edn.

Reference Books:

S.No	Authors	Title	Publishers	Year of Publication
1.	G. Patrick	An Introduction to Medicinal	Oxford	2009, 4 th Edn.
		Chemistry	University Press	
2.	D. Sriram&	Medicinal Chemistry	Pearson	2010, 2 nd Edn
	P. Yogeeswari		Education	

Pedagogy: Lecture by chalk and talk, power point presentation, e-content, group discussion, assignment, quiz, seminar.

Course Designers:

1. Dr E Kayalvizhy

2. Dr G Selvi

(12 Hrs)

End Semester Examination – 100 Marks

SECTION	WORD LIMIT	MARKS	TOTAL
A - 5 x 2 Marks (No Choice)	One or Two Sentences	10	
B -5 x 6 Marks (Internal Choice at same CLO Level)	300	30	100
C – 5x 12 Marks (Internal Choice at same CLO Level)	600-800	60	

Course Number	Course Name	Category	L	Т	Р	Credit
MCE2211	PAPER – X PHYSICAL CHEMISTRY – III (Reaction Kinetics & Electrochemistry)	THEOR Y	58	2	-	4

To enable the students to

- acquire knowledge about theories of electrolytes
- know about electrode, chemical kinetics and their applications
- learn the concepts of catalysis, adsorption and its mechanisms
- understand about corrosion and its control
- gain knowledge about batteries and its commercial applications

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	recall of theories of electrolytes, electrode kinetics, catalysis, principle of batteries and fuel cells and corrosion.	K1
CO2	illustrating the electrode electrolytic interface, effect of salts, pH and temperature	K2
CO3	appraise the theories of double layer, irreversibility process in electrochemical reaction, theories of adsorption and corrosion reactions	К3
CO4	apply the theories of electrode electrolytic interface to various models, to verify the reversibility of electron transfer, influence of various factors on reactions.	K4
CO5	comparing the models of double layer, theories of batteries, fuel cells, theories of corrosion & its mechanism	K5

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Н	Н	Н	М	М	Н	Н
CO2	Н	Н	Н	М	Н	Н	Н
CO3	Н	Н	Н	М	Н	Н	Н
CO4	Н	Н	Н	М	Н	Н	Н
CO5	Н	Н	Н	М	Н	Н	Η

Paper – X Physical Chemistry – III

Reaction Kinetics & Electrochemistry [MCE2211] (58 Hrs)

Unit I

Theories of Electrolytes

Arrhenius theory (Basic idea) – Limitations, Debye-Huckel-Onsager equation – Calculation of A& B, physical significance of k, Tests of Debye-Huckel. Wein effect, Debye-Falkenhagen effect.

Electrode Electrolytic Interface

Electrical double layer, electrocapillary phenomena- electrocapillary curves - Lippman equation, electro kinetic phenomena. Zeta potential and its applications.Measurements of double layer capacitances. Theoretical models of double layers- Helmholtz model, GouyChapmann model- potential of zero charge, Stern model- outer & inner Helmholtz planes

Unit II (12Hrs)

Electrode Kinetics

Kinetics of electron transfer, Butler Volmer equation, Tafel equation, transfer coefficients, charge transfer resistance, Multistep process. Application of Cyclic voltammetry to test reversibility of electron transfer.

Irreversibility in Electrochemical Reactions

Overvoltage – Hydrogen overvoltage, oxygen overvoltage, measurement of overvoltage, factors affecting and importances of overvoltage.

Unit III

Chemical Kinetics

Theories of Reaction Rates

The ARRT – Thermodynamic treatment of ARRT- Significance of reaction coordinate-Application of ARRT- Unimolecular& bimolecular processes-Lindemann Christiansen hypothesis, RRKM theory, Potential energy surface- Kinetic isotopic effects- Principles of microscopic reversibility- Steady State Approximation- Third order &termolecular reactions. Primary and secondary salt effects.

(12Hrs)

(12 Hrs)

Reactions in Solutions

Factors affecting reaction rates in solution – The influence of solvent, ionic strength, dielectric constant, cage effect & pressure on reactions in solutions.

Unit IV

(11 Hrs)

Catalysis

Acid – base catalysis – specific & general (Bronsted Catalysis law), Enzyme catalysis – Michaelis-Menten equation, effect of pH & temperature on an enzyme catalysed reaction (Single substrate only)

Adsorption

Differences between physisorption&chemisorptions - Theories of adsorption – Freundlich, Langmuir, BET & Gibb's, Langmuir – Hinshelwood.

Unit V (11 Hrs)

Batteries

Types, characteristics. Primary batteries – Dry cells, metal-air batteries, Ag_2O -Zn batteries. Secondary batteries – Pb-acid battery.

Fuel cells

Classification, $H_2 - O_2$ fuel cell, Hydrocarbon – Oxygen fuel cell, Phosphoric acid fuel cells.

Corrosion

Types & importance of corrosion. Passivation of metals – Pourbaix diagram – Evans diagram. Electrochemical principles of corrosion - Polarisation of the electrodes – Concentration polarization, Activation polarization.Methods to control corrosion.

Electrodeposition: Principle and applications.

Text Books:

S.N 0	Authors	Title	Publishers	Year of Publication
1.	S. Glasstone	Introduction to Electrochemistry	EastWest Press Pvt Ltd	2011, 10 th Printing
2.	K.J. Laidler	Chemical Kinetics	Pearson Education Pvt Ltd	2007, 3 rd Edn
3.	B.R. Puri, L.R. Sharma, M.S. Pathania	R. Puri, L.R. arma, M.S. Principles of Physical Chemistry Vishal Publications		2011, 5 th Edn

Reference Books:

S.No	Authors	Title	Publishers	Year of Publication
1	A. Frost &R.G.Pearson	Kinetics & Mechanism	Wiley Eastern Pvt Ltd	1970, 2 nd Edn
2	Gurdeep Raj	Advanced Physical Chemistry	GOEL Publishing House	2009, 35 th Edn
3	John.O.M. Bockris& A.K.N. Reddy	Modern Electrochemistry (Vol I & II)	Plenum Publishing Corporation	2006, 2 nd Edn
4	Raj Narayanan	An Introduction to Metallic Corrosion & its Prevention	Oxford & IBH Publishing Co., Pvt Ltd	1998 Reprint, 1 st Edn
5	Jain P C and Monika Jain	Engineering Chemistry	DhanpatRai Publishing Co.,	2015, 16 th Edn

Pedagogy: Lecture by chalk and talk, power point presentation, e-content, n exercise, group discussion, assignment, quiz, peer learning, seminar

Course Designers:

- 1. Dr. D. Nalini
- 2. Dr Sowmya Ramkumar

End Semester Examination – 100 Marks

SECTION	WORD LIMIT	MARKS	TOTAL
A - 5 x 2 Marks (No Choice)	One or Two Sentences	10	
B -5 x 6 Marks (Internal Choice at same CLO Level)	300	30	100
C – 5x 12 Marks (Internal Choice at same CLO Level)	600-800	60	

Course Number	Course Name	Category	L	Т	Р	Credit
MCE21P4	PRACTICAL IV – ORGANIC CHEMISTRY PRACTICAL II	PRACTICAL		-	60	4

To enable the students to

- estimate quantitatively the amount of phenol, aniline, glucose present in the given solutions & unsaturation of oils
- analyze the R_M value of butter, saponification / Iodine values of oils
- extract the active constituents of milk and tea
- prepare organic compounds by a two stage process

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	experiment and estimate quantitatively the amount of phenol, aniline and glucose in the given solution	K1
CO2	examine the degree of unsaturation in butter and oils	K2
CO3	prepare organic compounds and determine their melting points	К3

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Н	Н	Н	Н	Н	Н	Н
CO2	Н	Н	Н	Н	Н	Н	Η
CO3	Н	Н	Н	Н	Н	Н	Н

PRACTICAL IV – ORGANIC CHEMISTRY PRACTICAL II [MCE21P4] (60 Hrs)

1. Estimations

Estimation of phenol, aniline, methyl ketone, glucose & unsaturation.

2. Analysis of Oils

Reichart-Meissel value, Iodine value, Saponification value & Acetyl value.

3. Extraction & Estimation of Active Constituents

- i. Lactose from milk
- ii. Caffeine from tea
- iii. Citric acid or ascorbic acid from a tablet or from a natural source.

4. Two Stage Preparations

- i. p-nitro acetanilide
- ii. 1,3,5-tribromo benzene
- iii.p-bromo acetanilide

iv.Eosin

- v. p-bromo aniline
- vi.m-nitro benzoic acid from methyl benzoate.

5. Interpretation of FT-IR- carbonyl compounds, azomethine, alcohol, phenol & amine.

Text Book:

LAB MANUAL - prepared by Faculty, Department of Chemistry, PSGR Krishnammal College for Women

Reference Books:

S.No	Authors	Title	Publishers	Year of Publication
1.	F.G. Mann &	Practical Organic Chemistry	Pearson Education	2009
	B.C. Saunders			4 th Edn.
2.	G. H. Jeffery,	Vogel's Text Book of	Pearson Education	2009
	J. Bassett,	Quantitative Chemical Analysis		6 th Edn.
	J. Mendham &			
	R. C. Denney			

Pedagogy: Demonstration and hands on practicals

Course Designers:

- 1. Dr.N.Muthulakshmi Andal
- 2. Dr.N.Shyamala Devi

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
MCE21P5	PRACTICAL V - INORGANIC CHEMISTRY PRACTICAL – II	PRACTICAL	-	•	60	4

To enable the students to

- analyze quantitatively the metal ions such as Cu, Ni, Fe, Zn, Ca and Ba in a mixture
- estimate ferrous ion, oxalic acid and nitrite by Cerimetry
- separate the components in ink and flowers by Chromatography

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	separate and estimate the metal ions in a mixture	K1
CO2	estimate the inorganic components by Cerimetirc method	K2
CO3	separate the components in natural and commercial products	К3

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Н	Н	Н	Н	Н	Н	Н
CO2	Н	Н	Н	М	Н	Н	Н
CO3	Н	Н	Н	М	Н	Н	Н

PRACTICAL V - INORGANIC CHEMISTRY PRACTICAL – II [MCE21P5] (60 Hrs)

Cerimetry

- 1. Estimation of ferrous iron in ferrous ammonium sulphate
- 2. Estimation of oxalic acid
- 3. Estimation of nitrite

Estimation of metal ions in a mixture

- 1. Estimation of Copper & Nickel
- 2. Estimation of Iron & Nickel
- 3. Estimation of Copper & Zinc
- 4. Estimation of Calcium & Barium
- 5. Estimation of Copper & Iron

Chromatography

Column, Paper & Thin layer: Separation of Components in ink & flowers.

Text Book:

LAB MANUAL - prepared by Faculty, Department of Chemistry, PSGR Krishnammal College for Women

Reference Book:

S.No	Authors	Title Publishers		Year of Publication
1	J.Mendham, R.C.Denney, J.D.Barnes, M.Thomas, B.Sivasankar	Vogel's, Text Book of Chemical Analysis	Pearson Publications	2000 6 th Edn
2	A.I Vogel	A Text Book of Quantitative Inorganic Analysis	ELBS &Longmann, Green & Co. Ltd.	2011 9 th Edn

Pedagogy: Demonstration and hands on Practicals

Course Designers:

- 1. Dr E. Kayalvizhy
- 2. Dr. V. Hemapriya

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
MCE21P6	PRACTICAL VI – PHYSICAL CHEMISTRY PRACTICAL – II	PRACTICAL	-	-	75	4

To enable the students to

- understand the principle of conductivity experiments and carry out conductometric titrations.
- determine the rate constant for acid and base hydrolysis of esters and primary salt effect.
- learn the kinetics of adsorption of oxalic acid on charcoal.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	experiment and estimate the strength of the solutions by conductivity method.	K1
CO2	experiment and calculate the rate constant for ester hydrolysis and primary salt effect.	K2
CO3	apply Freundlich isotherm to study the nature of adsorption of oxalic acid on charcoal	К3

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Н	Н	Н	Н	Н	Н	Н
CO2	Н	Н	Н	Н	Н	Н	Н
CO3	Н	Н	Н	Н	Н	Н	Н

PRACTICAL VI – PHYSICAL CHEMISTRY – II [MCE21P6] (75 Hrs)

Conductivity Experiments

- 1 Determination of equivalent conductance of a strong electrolyte & the verification of DHO equation.
- 2 Verification of Ostwald's Dilution Law & Determination of pKa of a weak acid
- 3 Verification of Kohlrausch's Law for weak electrolytes.
- 4 Determination of solubility of a sparingly soluble salt.
- 5 Acid-base titration (strong acid vs strong base, weak acid vs strong base)
- 6 Precipitation titrations (mixture of halides only)
- 7 Determination of hydrolysis constant of aniline hydrochloride.

Kinetics

- 1 Acid hydrolysis of an ester at room temperature
- 2 Saponification of ester at room temperature
- 3 Evaluation of Arrhenius parameters E & A (any two temperatures only)
- 4 S₂O₈- Study on Primary salt effect & determination of concentration of KNO₃
- 5 Bronsted Catalysis Law

Adsorption

Adsorption of oxalic acid on charcoal & determination of surface area (Freundlich isotherm only)

Text Book:

LAB MANUAL - prepared by Faculty, Department of Chemistry, PSGR Krishnammal College for Women

Reference Books:

S.No	Authors	Title	Publishers	Year of Publication
1.	A.J. Findlay & Kitchener	Practical Physical Chemistry	Longmann Publication	1973 9 th Edn
2.	B. Viswanathan& P.S. Raghavan	Practical Physical Chemistry	Viva Books	2009 3 rd Edition.

Pedagogy: Demonstration and hands on practicals

Course Designers:

- 1. Dr. D Nalini
- 2. Dr. N. Aruna Devi
- 3. Dr. G Sathya Priyadarshini

RESEARCH METHODOLOGY [MCE22S1] Special Course

Credit - 2

Objectives:

- To acquire knowledge about sampling & errors
- To inculcate basic ideas regarding research, thesis writing
- To gain knowledge about the use of tools and software in research

UNIT I

Errors involved in Chemical Analysis

Classification, minimization of errors, determination of accuracy of results, reliability of results, rounding numbers -Significant figures - Mean standard deviation.

Unit II

Thesis Writing

Nature and purpose, the components of dissertation, overview, title and title page, abstract, preface and table of contents, introduction, results, discussion, conclusion, experimental section, references and miscellaneous components. Preparation of dissertation

Unit III

Paper Writing

Title, Abstract, Introduction, Materials and Experimental methods, Results and discussion, Conclusion, Acknowledgement, References .

Impact factor, Citation Index, h-Index, Patent filing.

Unit IV

Materials, Tools and Methods in Scientific Writing

Writing techniques – Introduction, word processing and page layout, hardware and operating systems, word processing and page layout software, writing and formatting with computer, becoming accustomed to your system

Unit: V

Research Ethics and Responsible Conduct in Research

The historical and analytical basis of research ethics, responsible conduct in research (Informed Consent, Risk/Benefit Assessment, Honesty in Science: Integrity and Authorship and Conflicts of Interest, Privacy and Confidentiality), The legal regulation of research ethics in India (From UGC & MHRD), Regulatory requirements relevant to international research.

(30 Hrs)

m

(6 Hrs)

(6 Hrs)

(6 Hrs)

(6 Hrs)

(6 Hrs)

Text Books:

S.No	Authors	Title	Publishers	Year of
				Publication
1.	S.M. Khopkar	Basic Concepts of Analytical	New Age International	2008
		Chemistry	Publishers	3 rd Edn.
2.	D.A. Skoog,	Analytical Chemistry – An	Saunders College	2000
	D.M. West &	Introduction	Publishing	7 th Edn.
	F. James Holler			
3.	Hans F. Ebel,	The Art of Scientific Writing	Wiley Publishing	2005
	Claus Bliefert			2 nd Edn.

Reference Books:

S.No	Authors	Title	Publishers	Year of Publication
1.	C.R. Kothari	Research Methodolgy-	New Age	2011 Reprint
		Methods & Techniques	International	$2^{nd}Edn.$
			Publishers	
2.	D.A. Skoog&	Principles of Instrumental	Harcourt	2007
	F.J. Holler	Analysis	Brace	6 th Edn.
			College	
			Publishers	
3.	Y.K. Singh, R. Nath	Research Methodology	APH	2005
			Publishing	1 st Edn.
			Corporation	
4	Mark Suckow, Bill	Research Regulatory	eBook	Ist Edition ISBN:
	rates	Compliance		9780124200654)
5	Mark P.Aulisio, Robert	Role of the Ethics	The	Chest 2008 August;
	M.Arnold	Committee: Helping To	American	134(2): 417-424
		Address Value Conflicts or	College of	
		Uncertainties	Dhysioions	
			Published by	
			Elsevier	
6	Institute of Medicine.	On Being a Scientist, A	National	2009
0	National Academy of	Guide to Responsible	Academies	0309141354
	Engineering, National	Conduct in Research:	Press	ISBN 9780309141352
	Academy of Sciences,	Third Edition (2009)		
	Committee on Science,	Third Edition (2003)		
	Engineering, and			
	Public Policy			
	Recent research ethics	policy from Government of	India	
	https://www.glos.ac.uk	<u>x/docs/download/Research/h</u>	andbook-of-pr	inciples-and-
	procedures.pdf			

Course Designers:

Dr.G. Sathya Priyadarshini

End Semester Examination – 100 Marks

Section	Marks	Total
A – 5X5 marks (Either or)	25	
B – 5 X15marks (Either or)	75	100

	CYBERSECURITY II	Category	L	Т	Р	Credits
MNM22CS2			30	-	-	Grade

This course provides the classification of cyber security and cyber crime and its laws and data privacy and security in social media

Course Outcomes

On successful completion of the course, the students will be able to

CLONumbe	CLO Statement	KnowledgeLeve
r		1
CO1	Understand the basic concepts of Cybersecurity and Cybersecurity threat landscape.	K2
CO2	Apply the methods to identify the cyber-attacks and crimes.	K3
CO3	Analyze the legal framework that exists in India for cybercrime and legal frame work followed by other countries.	K4
CO4	Estimate the data privacy and security issues related to personal data privacy and security.	K5
CO5	Create a privacy setting on social media platform and register complaints on a social media platform.	K6

CYBERSECURITY II MNM22CS2

Overview of cyber security: Cyber security terminologies- Cyberspace- Cyber attack- Cyber threats - Cyber terrorism – Cyber warfare.

Cyber crimes: Cyber Crimes targeting computer system and mobiles- Online scam frauds: emails Scams-Phishing- Vishing- Smishing- Online job fraud- online sextortion- Debit and credit card fraud- Online payment fraud- cyberbullying. Social Media Scam &Frauda: Impersonation- Identify theft -Job scams-Misinformation- Fake newcyber crime against persons -Cyber grooming -Child pornography - cyber stalking-Cyber police station -Crime reporting produce.

UNIT III

UNIT I

UNIT II

Cyber law: Cyber laws and legal and ethical aspects related to new technologies: AI/ML-IoT-Blockchain- Darknet and social media- Cyber law of other countries.

UNIT IV

UNIT V

Data privacy and Data security: Defining data- Metro-Big data- Non personal data- Data protection-General Data Protection Regulations (GDPR)- 2016 Personal Information Protection and the Electronic document Act(PIPEDA)- Social media Data privacy and Security issues.

Social Media Platforms and Cyber Security : Case Study on Platform for reporting Cyber Crimes, Checklist for reporting cyber crimes online, Setting privacy settings on social media platforms, Registering complaints on social media platforms, Do's and Don'ts for posting content on social media platforms, prepare password policy for computer and mobile device, security controls for computer and mobile phones , digital Forenics, Cyber Bulling, Phishing, Facebook Attack, Cyber Security audit and Compliance and National Security Policies.

Reference Books:

- 1. AnandShinde (2021), Introduction to Cyber Security Guide to the world of Cyber Security, Notion Press SumitBelapure, Nina Godbole (2011), Cyber security understanding cyber crimes, computer forensics and legal Perspectives, Wiley India Pvt Ltd.
- 2. Dorothy F. Denning (1998), Information warfare and security, Addison Wesley.
- 3. Henry A. Oliver, (2014), Security in the digital age: social media security threats and vulnerabilities, Social Wise Media Group NatarajVenkataramanan, AshwinShriram (2016), Data privacy principle and practice. CRC Press
- 4. W. KragBrothy (2006), Information security governance guidelines for information security manager, Wiley Publication.

(6 hrs)

(8 hrs)

(4 hrs)

(5hrs)

(7 hrs)

5. Martin Weiss, Michael G. Solomon (2015), Auditing IT Infrastructure for compliance, 2/e, Jones Bartlett Learning.

Assessment Pattern: 100 Marks

Quiz : 60 marks

Case Study : 20 marks

Poster : 20 marks

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
MCE2212	PAPER – XI ELECTIVE –III CHEMISTRY & TECHNOLOGY OF POLYMERS	THEORY	58	2	-	4

To enable the students to

- understand the kinetics of polymerization
- learn about co-polymerisation and ring opening polymerization
- gain knowledge about Z-N Polymerization
- learn the technology & applications of polymers

Course Outcomes

On the successful completion of the course, students will be able to

CLO Number	CO Statement	Knowledge Level
CLO1	reproduce the classification of polymers and analyze the kinetics of polymerization reaction	K1
CLO2	discuss the importance of ring opening polymerization and co- polymerization techniques, infer the properties of fibers based on need, relate the properties of elastomers based on structure	K2
CLO3	apply Z-N catalyst for the synthesis of stereo specific polymers, choose a spinning technique, calculate the parameters for the polymer	К3
CLO4	appraise the different methods of fibre technology and fibre after treatments, role of fillers in reinforcement process, deduce the monomer ration in polymer properties	K4
CLO5	integrate the role of fibers, elastomers and speciality polymers for various applications and design a synthetic route for a specific polymers based on its need	K5

Mapping with Programme Outcomes

ClOs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CLO1	Н	Н	Н	М	М	Н	Η
CLO2	Н	Н	Н	М	М	Н	Н
CLO3	Н	Н	Н	М	М	Н	Η
CLO4	Н	Н	Н	М	М	Н	Н
CLO5	Н	Н	Н	М	М	Н	Н
Paper –XI Elective –III Chemistry & Technology of Polymers[MCE2212] (58Hrs)

Unit I

Step & Chain Growth Polymerization

Polymers – Introduction, Classification of polymers – Polymerization reactions – Chain polymerization & Step Polymerization – Types, Mechanism & Kinetics. Molecular weight control in linear polymerization, Flory's MWD, Interfacial polymerization.Radical chain polymerization - General Mechanism, Kinetics & Sequence of events – Initiation by Thermolysis, Photolysis & Redox method. Initiator efficiency.

Unit – II

Copolymerization & Ring Opening Polymerization

Copolymers - Types, Importance of Copolymerization, Copolymer equation – Derivation – Significance & Experimental determination of Monomer reactivity ratios. Ideal, Alternating & Block copolymerization Behavior. Q-e scheme. Rate of Copolymerization- Derivation based on chemical controlled & Diffusion controlled termination.

Ring Opening Polymerization: General characteristics of ring opening polymerization, kinetics and mechanism of cyclic ethers.

Unit III

Ziegler – Natta Polymerization

Definition of Z-N catalysts – Modification of Z-N catalysts by Third components – Mechanism of Z-N polymerization of α –Olefins – Monometallic & Bimetallic. Kinetics of Z-N polymerization – Rate curves, polymerization product – Adsorption kinetics. Stereochemical structures of PP, PB & PIP.

Unit IV

Fibre Technology

Criteria for fibre formation – properties of textile fibres- Denier, Crimp, Moisture regain, Moisture absorption – Tenacity, aesthetic properties. Spinning – melt, wet, & dry. Fibre after

(11 Hrs)

(12 Hrs)

(12Hrs)

(**11Hrs**)

treatments - Scouring, Sizing, Lubrication, Finishing. Manufacture of Nylon, Polyester, Viscose rayon & Polyacrylonitrile fibre.

(12 Hrs)

Unit V

Elastomers

Molecular requirements, Vulcanization- Sulphur & Non sulphur, Mechanism & Reinforcement- Synthetic rubbers – Composition, Properties & Uses: SBR, Nitrile, Butyl rubber, Neoprene, Thiokol.

Speciality Polymer

Polyelectrolytes, Conducting polymers, Biomedical polymers – as implant materials, carriers of bioactive substances & polymeric drugs.

S.No	Authors	Title	Publishers	Year of Publication
1.	F. W. BillMeyer	Text Book of Polymer	John Wiley	2009 Reprint
		Science		3 rd Edn.
2.	P. J Flory	Principles of Polymer	Asian Books	2006
		Chemistry		1 st Edn.
3.	George Odian	Principles of	John Wiley	2007 Reprint
		Polymerization		4 th Edn.

Text Books:

Reference Books:

S.No	Authors	Title	Publishers	Year of Publication
1.	V.K. Ahluwalia &	Polymer Science : A	Ane Books	2008
	Anuradha Mishra	Text Book		1 st Edn.
2	Coores T Austin	Sharayaa Chamiaal	McCrow II'll	2012 Degrint
Ζ.	George. 1. Austin	Shreves Chemical	McGraw Hill	2012 Reprint
		Process Industries	International	5 ^m Edn.
3.	V.A. Shenai	Technology of Textile		1991
		Processing Vol. I :	Sevak Publishers	3 ^d Edn. Revised
		Textile Fibres		

Pedagogy:

Lecture by chalk and talk, power point presentation, e-content, group discussion, assignment, quiz, peer learning, seminar

Course Designers:

- 1. Dr. Sowmya Ramkumar
- 2. Dr K S Sasireka

End Semester Examination – Que	estion paper pattern
--------------------------------	----------------------

SECTION	WORD LIMIT	MARKS	TOTAL
A - 5 x 2 Marks (No Choice)	One or Two Sentences	10	
B -5 x 6 Marks (Internal Choice at same CLO Level)	300	30	100
C – 5x 12 Marks (Internal Choice at same CLO Level)	600-800	60	

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
MCE2213	PAPER – XI ELECTIVE - IV- APPLIED CHEMISTRY (optional)	THEORY	58	2	-	4

To enable the students to

- understand the chemistry of dairy and leather processing
- acquire knowledge about ceramic products and lubricants
- learn about explosives and rocket fuels.

Course Outcomes

On the successful completion of the course, students will be able to

ClO Number	CO Statement	Knowledge Level
CL01	list the properties of milk & predict the quality	K1
CLO2	explain the different steps in leather processing and analyze the effluent problems in tanneries	К2
CLO3	appraise the chemistry involved in manufacturing ceramic products	K3
CLO4	discuss the properties of lubricants and classification of explosives/ rocket fuels	K4

Mapping with Programme Outcomes

ClOs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CLO1	Н	Н	Н	М	М	Н	Н
CLO2	Н	Н	Н	М	М	М	Н
CLO3	Н	Н	Н	L	М	М	Н
CLO4	Н	Н	Н	М	М	М	Н

Paper – XI Elective - IV- APPLIED CHEMISTRY (Optional) [MCE2213] (58Hrs)

UNIT I

Dairy Chemistry

Composition of Milk, factors affecting the composition of milk, micrflora of raw milk, milk fat/ proteins/sugar flavour and aroma, physical properties, effect of heat, milk processing – clarification, pasteurization, homogenization. Milk products- Cream, Butter, Ice cream and milk powder. Adulteration of milk

UNIT II

Leather Chemistry

Introduction, Structure of hides and skin, Leather Processing – Process before tanningflaying and curing (drying, salt curing and brine curing and pickling), Soaking, Liming, Fleshing, Unhairing, Deliming and Bathing.

Tanning Processes – Vegetable, Synthetic, Chrome and Aldehyde tanning. Tannery effluents and Byproducts – primary and secondary treatments.

UNIT III

Ceramic Industries

Basic raw materials- Chemical conversions including basic ceramic chemistry, Whitewares, Structural clay products, Refractories – specialized ceramic products, vitreous enamel, kilns.

UNIT IV

Lubricants

Introduction, functions, requirements, mechanism of lubrication, classification of lubricants, properties of lubricating oil – viscosity, viscosity index, oiliness, flash and fire points, cloud and pour points, carbon residue, aniline point, volatility, corrosion and decomposition stabilities.

(12Hrs)

(11Hrs)

(12Hrs)

(11 Hrs)

UNIT V

Explosives and rocket fuels

Introduction, characteristics, classification – primary, high and low, requirements of explosives, rocket propellants, characteristics, classification – solid and liquid propellants with examples.

Text Books:

S.No	Authors	Title	Publishers	Year of Publication
1.	Durga Nath Dhar	Applied Chemistry –II	Vayu Education of	2010
			India	1 st Edn
2.	B. Srilakshmi	Food Science	New Age International Publishers	2014 7 th Edn
3.	Jayashree Ghosh	Fundamental Concepts of Applied Chemistry	S. Chand &Co	2006 1 st Edn
4.	M. R. Adams & Maurice O. Moss	Food Microbiology	RSC Publishers	2007 3 rd Edn

Reference books:

S.No	Authors	Title	Publishers	Year of Publication
1.	George T. Austin	Shreve's Chemical	McGraw – Hill	1984
		Process Industries	Book Co	5 st Edn
2.	MKarunanithi,	Applied Chemistry	Anuradha Agencies	2006
	T.Ramachandran,			Reprint
	H.Venkataraman,			
	N. Ayyaswamy			

Pedagogy:

Lecture by chalk and talk, power point presentation, e-content, group discussion, assignment, quiz, seminar.

Course Designers:

1. Dr S Charulatha

End Semester Examination – 100 Marks

SECTION	WORD LIMIT	MARKS	TOTAL
A - 5 x 2 Marks (No Choice)	One or Two Sentences	10	
B -5 x 6 Marks (Internal Choice at same CLO Level)	300	30	100
C – 5x 12 Marks (Internal Choice at same CLO Level)	600-800	60	

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
MCE2214	PAPER – XII GREEN CHEMISTRY	THEORY	43	2	_	3

To enable the students to

- understand the basic principles and importance of green chemistry for industrial applications
- acquire knowledge about the microwave and ultra sound assisted synthesis
- understand the concept of phase-transfer catalysis
- gain knowledge about ionic liquids, Crown ethers and their applications

Course Outcomes

On the successful completion of the course, students will be able to

CLO Number	CO Statement	Knowledge Level
CLO1	define green synthesis, atom percentage, green reagents, principle of ultrasonication and microwave synthesis, phase transfer catalysts and crown ethers	K 1
CLO2	classify the various types of green reagents, ionic liquids, phase transfer catalysts and crown ethers	K2
CLO3	apply green reagents, solvents, green catalysts and crown ethers to synthesize various organic compounds	К3
CLO4	analyse the role of green principles in organic synthesis and their applications in industries	K4
CLO5	justify the yield of organic reactions using green solvents, catalysts, reagents and crown ethers.	K5

Mapping with Programme Outcomes

ClOs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CLO1	Н	Н	Н	М	Н	Н	Н
CLO2	Н	Η	Η	Η	Η	Н	Η
CLO3	Н	Н	Η	М	Н	Η	Н
CLO4	Η	Η	Η	Η	Η	Η	Н
CLO5	Н	Н	Н	Н	Н	Н	Н

Paper –XII Green Chemistry [MCE2214]

Unit I

Green Chemistry

Definition, need for green chemistry, basic principles, planning a green synthesis in the laboratory- atom efficiency process & atom economy- rearrangement, addition, substitution, elimination. Synthesis involving basic principles of green chemistry – synthesis of styrene, adipic acid, green chemistry in day-today life - dry cleaning of clothes, versatile bleaching agents.

Unit II

Green reagents

Dimethylcarbamate, polymer supported reagents, green catalysts - acidic, basic, oxidation and polymer supported catalysts.

Microwave Induced Green Synthesis

Introduction- microwave assisted reactions in water – Hoffmann elimination, hydrolysis, oxidation, inorganic solvents- esterification, chalcone synthesis, Diel's Alder reaction, decarboxylation and Fries rearrangement.

Unit III

Ultrasound Assisted Green Synthesis

Introduction- esterification, saponification, oxidation, reduction, hydroboration, coupling reaction, Diels Alder reaction, Cannizaro reaction, Strecker synthesis, Reformatsky reactions.

Ionic liquids

Introduction, applications in organic synthesis - Diels Alder reaction, advantages & disadvantages of ionic liquids.

Unit IV

Phase transfer catalysts

Introduction, definition, mechanism of phase transfer catalysed reaction, types and advantages of phase transfer catalysts, types of phase transfer catalysed reactions, preparation of phase transfer catalysts, applications of phase transfer catalysis in organic synthesis- alcohols from alkyl halides and addition to olefins.

Unit V

Crown ethers: Introduction, nomenclature, special features, nature of donor site, general synthesis of Crown ethers -synthesis of [12] Crown- 4, [18] Crown -6 and cryptates. Synthetic applications – esterification, saponification and KMnO₄ oxidation.

(8 Hrs)

(8 Hrs)

(43 hrs)

(9Hrs)

(9Hrs)

(9Hrs)

Text Book:

S.No	Authors	Title	Publishers	Year of Publication
1.	V.K.Ahluwalia	Environmentally	Ane Books Pvt Ltd	2012
		Beingn Reaction		Z Eun.
2.	V.K. Ahluwalia,	New Trends in Green	Anamaya	2012 Reprint
	M.Kidwai	Chemistry	Publishers	
3.	V.K.Ahluwalia,	Organic Synthesis -	Narosa Publishing	2012 Reprint
	Renu Aggarwal	Special Techniques	House	2 nd Edn.

Reference Book:

S.No	Authors	Title		Publishers		Year of Publication
1	RashmiSanghi,	Green	Chemistry:	Narosa	Publishing	2012 Reprint
	M.M.Srivastava	Environment		House		4 th Edn.
		Friendly				
		Alternatives				

Pedagogy:

Lecture by chalk and talk, power point presentation, e-content, group discussion, assignment, quiz, seminar.

Course Designers:

- 1. Dr. G. Selvi
- 2. Dr. G. Sathya Priyadarshini

End Semester Examination – 100 Marks

SECTION	WORD LIMIT	MARKS	TOTAL
A - 5 x 2 Marks (No Choice)	One or Two Sentences	10	
B -5 x 6 Marks (Internal Choice at same CLO Level)	300	30	100
C – 5x 12 Marks (Internal Choice at same CLO Level)	600-800	60	

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
MCE2215	PAPER – XIII- NANO CHEMISTRY AND BIOINORGANIC CHEMISTRY	THEORY	43	2	-	3

To enable the students to

- gain knowledge about Nano chemistry
- know about the various methods of synthesis, properties and applications of nanomaterials
- understand the mechanism of oxygen transport by haemoglobin and myoglobin
- learn about the biological functions of co-ordination complexes and their applications in various fields

Course Outcomes

On the successful completion of the course, students will be able to

ClO Number	CO Statement	Knowledge Level
CLO1	recall the synthesis of metal nanoparticles, relate the binding and physiological properties of myoglobin and haemoglobin	K1
CLO2	outline the characterization techniques to synthesis ceramic nano materials and summarize the structure of enzymes	К2
CLO3	choose the properties of nanomaterials for various fields, compare and explain the synthesis and functions of haemoglobin, ferredoxins, rubredoxins and blue copper protein	K3
CLO4	analyse the type's , properties and applications of fullerenes , non-iron sulphur proteins	K4
CLO5	assess the synthetic routes for synthetically used CNT's , appraise the role of inorganic compounds in biological systems	К5

Mapping with Programme Outcomes

<u> </u>		0					
ClOs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CLO1	Н	Н	Н	М	М	Н	Н
CLO2	Н	Н	Н	М	Н	Н	Н
CLO3	Н	Н	Н	М	М	Н	Н
CLO4	Н	Н	Н	Н	М	Н	Н
CLO5	Н	Н	Н	Н	М	Н	Н

Paper – XIII- Nanochemistryand Bioinorganic Chemistry [MCE2215] (43Hrs)

Unit I Nanochemistry I

Introduction, definition & nature of nanomaterials. Synthesis of metal nanoparticles – physical methods (laser ablation, physical vapour deposition, sputtering & solvated metal atom dispersion) chemical methods – thermolysis, sonochemical approach, reduction of metal ions, phase transfer processes in nanomaterial synthesis, biosynthesis of nanoparticles. Synthesis of semiconductors nanomaterials – precipitation method, thermal decomposition of complex precursors.

Unit II

Nanochemistry II

Synthesis of ceramic nanomaterials – physical methods (gas condensation method, laser method), chemical method (Sol-Gel Synthesis). Characterization of Nanomaterials (SEM, Scanning Tunneling Microscopy & atomic force microscopy), stability of nanoparticles in solution.

Properties of nanomaterials – size effect, optical, electrical & magnetic properties, brief account of application of nanomaterials.

Unit III

Nanochemistry III

Fullerenes -Introduction and properties, Carbon Nanotubes- types, properties, defects, synthesis and applications-structural materials, electromagnetic field, chemical field, electrical circuits and current applications.

Unit IV

Inorganic Chemistry of Biological Systems - I

Metalloporphyrines and Respiration – Cytochromes, dioxygen binding, transport and utilization. The binding of dioxygen to myoglobin, physiology of myoglobin and haemoglobin, structure and function of haemoglobin, ferredoxins and rubredoxins, Blue copper protein.

(8 Hrs)

(9Hrs)

(8 Hrs)

(9Hrs)

Unit V

Inorganic Chemistry of Biological Systems - II

Photosynthesis- chlorophyll and the photosynthetic reaction centre, enzymes – structure and function of carboxy peptidase A, carbonic anhydrase, vitamin B_{12} – structure and functions, applications of coordination complexes in medicine, agriculture, horticulture and industry.

Text Books:

S.No	Authors	Title	Publishers	Year of
				Publication
1.	James.E.Huheey, Keiter	Inorganic Chemistry-	Pearson Education	2009
		Principles of Structure		5 th Edn
		and Reactivity		
2.	Mark Ratner, Daniel	Nanotechnology	Pearson Education	2008
	Ratner			1 st Edn
3.	S .Shanmugam	Nanotechnology	MJP Publishers	2011
				1 st Edn.
4.	B. Viswanathan	Nanomaterials	Narosa Publishing	2014
			House	Reprint

Reference Books:

S.No	Authors	Title	Publishers	Year of Publication
1.	CTI Reviews	Principles of	Cram101 Textbook	2016
		Bioinorganic Chemistry	Reviews	1 st Edn
2.	AsimK.Das	Bioinorganic Chemistry	Books & Allied Ltd	2013
				Reprint
3.	Richard Booker &	Nanotechnology	John Wiley	2008 Reprint
	Eary Boysen			1 st Edn

Pedagogy:

Lecture by chalk and talk, power point presentation, e-content, group discussion, assignment, quiz, seminar, peer learning.

Course Designers:

- 1. Dr. N. Arunadevi
- 2. Mrs. G. SathyaPriyadarshin

End Semester Examination – 100 Marks

SECTION	WORD LIMIT	MARKS	TOTAL
A - 5 x 2 Marks (No Choice)	One or Two Sentences	10	
B -5 x 6 Marks (Internal Choice at same CLO Level)	300	30	100
C – 5x 12 Marks (Internal Choice at same CLO Level)	600-800	60	

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
MCE2216	ALC - (OPTIONAL) - CHEMOINFORMATICS	THEORY	Sel Stu	lf ıdy		5

To enable the students to

- understand the principles of chemoinformatics and representation of molecules
- gain vivid knowledge about quantitative structure activity relationship
- know the applications of chemoinformatics.

Course Outcomes

On the successful completion of the course, students will be able to

CLO Number	CO Statement	Knowledge Level
CLO1	appraise the molecular structure database	K1
CLO2	illustrate the representation of molecules	K2
CLO3	summarize the methods of searching chemical structures	K3
CLO4	interpret structure-spectra correlations and computer assisted structure elucidation	K4
CLO5	design drug based on chemoinformatics	K5

Mapping with Programme Outcomes

CLOs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CLO1	Н	Н	Н	Н	М	Н	Н
CLO2	Н	Н	Н	Н	М	Н	Н
CLO3	Н	Н	Н	Н	М	Н	Н
CLO4	Н	Н	Н	Н	М	Н	Н
CLO5	Н	Н	Н	Н	М	Н	Н

ALC-(OPTIONAL) – Cheminformatics [MCE2216] Self study

Unit I

Introduction to Cheminformatics

Chemical drawing- three dimensional effect- optical activity- computer packages modelling, molecular structure database- file format- three dimensional display- proteins

Unit II

Representation of Molecules and Chemical Reactions

Nomenclature, different types of notations, SMILES coding, Matrix representations, Structure of Mol Files and Sd files, Libraries and tool kits, Different electronic effects, Reaction classification.

Unit III

Chemical Structures Search

Full structure search, substructure search, basic ideas, similarity search, three dimensional search methods, basics of computation of physical and chemical data and structure descriptors, data visualization.

Unit IV

Applications of Molecular Modeling

Prediction of Properties of Compounds, Linear Free Energy Relations, Quantitative Structure-Property Relations, Descriptor Analysis, Model Building, Modeling Toxicity, Structure-Spectra correlations, Prediction of NMR, IR and Mass spectra, Computer Assisted Structure elucidations, Computer Assisted Synthesis Design.

Unit V

Drug Design

Introduction, target identification and validation- lead finding and optimization- analysis of HTS data- virtual screening. Design of combinatorial libraries, Ligand-Based and structure based Drug design. Application of Chemoinformatics in Drug Design.

Text Books:

S.No	Authors	Title	Publishers	Year of Publication
1.	Andrew R. Leach	An Introduction to	Springer: The	2009
	& Valerie, J. Gillet	Chemoinformatics	Netherlands	
2.	Gasteiger, J.	Chemoinformatics: A	Wiley-VCH	2006
	&Engel, T.	Text-Book		
3.	Alan Hinchliffe	Molecular Models for	John Wiley & Sons	2011
		Beginners		

Reference Books:

S.No	Authors	Title	Publishers	Year of Publication
1	Jürgen Bajorath	Chemoinformatics: Concepts, Methods, and Tools for Drug Discovery	Humana Press	2004
2	Gupta. S. P.	QSAR & Molecular Modeling	Anamaya Publications	2011

Course Designers:

1. Dr. S. Charulatha

End Semester Examination:

SECTION	MARKS	TOTAL
A-5/8 X 5=25 Marks	25	75
B – 5/8 X 10 =50 Marks	50	

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
MCE2217	ALC - (OPTIONAL) - INDUSTRIAL CHEMISTRY	THEORY	S	Self Stud	y	5

To enable the students to

- gain knowledge about the manufacture of sugar, glass, cement and varnishes
- understand the properties of glass, cement and rubber
- learn the chemistry of paints
- know the applications of glass, cement and rubber

Course Outcomes

On the successful completion of the course, students will be able to

CLO Number	CO Statement	Knowledge Level
CLO1	illustrate the manufacture of sugar, varnishes, glass and cement	K3
CLO2	analyse the constituents and setting of paints	K4
CLO3	examine the properties of sugar, paint, varnishes, glass, cement and rubber	K5
CLO4	generalize the vulcanization techniques of rubber	K5
CLO5	appraise the importance of Plaster of Paris and Gypsum	K5

Mapping with Programme Outcomes

CLOs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CLO1	Н	Н	Н	М	М	Н	Н
CLO2	Н	Н	Н	М	М	Н	Н
CLO3	Н	Н	Н	М	М	Н	Н
CLO4	Н	Н	Н	М	М	Н	Н
CLO5	Н	Н	Н	М	М	Н	Н

Unit I

Sugar

Introduction, Manufacture of Cane Sugar - Extraction of juice, Purification of Juice, Defecation, Sulphitation, Carbonation, Concentration or Evaporation. Crystallization -Separation of crystals, drying, refining, recovery of sugar from Molasses, Bagasse. Manufacture of sucrose from beet root. Estimation of sugar, double sulphitation process, double carbonation.

Unit II

Paints

Classification, constituents, setting of paints, requirements of a good paint. Emulsion, Latex, Luminescent, Fire retardant and Heat resistant paints. Methods of applying paints. Special applications and failures of paint.

Varnishes - Introduction – Raw materials – Manufacture of varnishes.

Unit III

Glass

Introduction, Physical/Chemical properties, Characteristics of glass. Raw materials, methods of manufacture - formation of batch material, melting, shaping, annealing and finishing of glass.

Unit IV

Cement

Introduction, raw materials, manufacture – Wet process, Dry process, reactions in kiln, setting of cement, properties and uses of cement. Plaster of Paris, Gypsum, Lime.

Unit V

Rubber

Introduction, Importance, types and properties of rubber. Refining of crude rubber, drawbacks of raw rubber. Rubber fabrication, vulcanization techniques.

Text Books:

S.No	Authors	Title	Publishers	Year of Publication
1.	B.K.Sharma	Industrial Chemistry	Goel Publishing House	2008 14 th Edn.

Reference Books:

S.No	Authors	Title	Publishers	Year of Publication
1.	P.C.Jain& Monika Jain	Engineering	DhanpatRai Publishing	2016
		Chemistry	Co., (Pvt) Ltd	16 th Edn.
2.	C. Parameswara	Text Book of		2006
	Murthy, C.V.Agarwal,	Engineering	BS Publications	1 st Edn. Revised
	Andhra Naidu	Chemistry		

Course Designers:

1. Dr. R. Revathi

End Semester Examination:

SECTION	MARKS	TOTAL
A-5/8 X 5=25 Marks	25	75
B – 5/8 X 10 =50 Marks	50	

Duration: 3 Months

ESE: 50 Marks

Total: 100 Marks

Objectives

CIA: 50 Marks

To make the students to

- understand the importance of experimental analysis, scientific approach in solving problems related to the environment and society
- educate and train the students to write scientific papers.

Individual Project and Viva Voce

Each faculty will be allotted 2/3 students. A specific problem will be assigned to the students or they will be asked to choose a problem/area of interest. The topic/area of work will be finalized at the end of III semester, allowing scope for the students to gather relevant literature during the vacation. The research work can be carried out in the college or at any other organization approved by the guide and the HOD. Viva Voce/presentation will be conducted by a panel comprising of HOD, internal / external examiners. A power point presentation by the student before the audience will be evaluated on the basis of student's response to the questions.

Suggested areas of work

Synthetic Organic Chemistry, Coordination Chemistry, Corrosion Studies, Environmental Chemistry, Polymer Chemistry, Phytochemistry, Nanochemistry, Physical Chemistry.

Methodology

Each project should contain the following details:

Brief introduction on the topic Review of Literature Materials and Methods Results and Discussions – evidences in the form of figures, tables and photographs Conclusion / Summary Bibliography

Evaluation -	Total - 100 Marks (Internal – 50 marks, External -	– 50 marks)
Internal		Total - 50 marks
I Review – S	Selection of the field of study, Topic & Literature col	lection - 15 marks
II Review –	Research Design and Data Collection	- 15 marks
III Review – A	Analysis & Conclusion, Preparation of rough draft	- 20 marks
External		Total – 50 marks
Project		Total – 30 marks
	Relevance of the topic to the academic / society	- 5 Marks
	Objectives	- 5 Marks
	Experimental design	- 10 Marks
	Expression of results and discussion	- 10 Marks
Viva Voce		Total – 20 marks
	Presentation	- 10Marks
	Discussion	- 10 Marks