DEPARTMENT OF MATHEMATICS (AIDED)

CHOICE BASED CREDIT SYSTEM (CBCS) & LEARNING OUTCOME BASED CURRICULUM FRAMEWORK (LOCF)

BACHELOR OF MATHEMATICS (B.Sc Mathematics)

Department of Mathematics

Programme: B.Sc. Mathematics 2021 - 2024 Batch and Onwards

Programme Educational Objectives

Program Educational Objectives of **B.Sc. Mathematics** Programme is to enable the students to possess the following knowledge and skills

1. Mathematical knowledge

- The ability to demonstrate an understanding of the foundations of calculus, analysis and linear algebra as well as the ability to think logically and critically.
- ❖ The ability to explore the new emerging areas of science and engineering like Nonlinear Dynamics, Computational Mathematics and Cryptography.
- ❖ The ability to abstract general principles from examples.

2. Problem solving skills

- ❖ The ability to formulate, analyses, and solve problems through analytical and computational techniques and apply them to other disciplines when appropriate.
- ❖ The ability to plan, analyse and investigate industrial and societal problems using simulation tools and scientific computing

3. Research skills

- ❖ The ability to search for, locate, extract, organise, evaluate and use or present information that is relevant to a particular topic.
- The ability to carry out interdisciplinary research among the various basic sciences and engineering disciplines

4. Communication skills

❖ The ability to Display competence in oral, written, and visual communication with the help of relevant current technology

5. IT skills

The ability to acquire necessary computer skills and knowledge to excel in their professional career in related disciplines

6. Employable skills

- ❖ The ability to translate their degree into a viable career path with the using their mathematical and statistical skills
- ❖ The ability to become leaders in their associated organization with team building and managing capabilities

PSGR Krishnammal College for Women

Department of Mathematics

Programme: B.Sc. Mathematics

Programme Learning Outcomes

B.Sc. Mathematics will enable the students to be successful in

- A career that uses Mathematics in business, industry or government
- Teaching Mathematics at all levels
- > Carrying out research in Mathematics or fields related to Mathematics.
- > Competitive examinations like GATE, GRE, SET/NET, TNPSC, UPSC etc.

On the successful completion of the Programme, the following are the expected outcomes.

PLO Namedon	PLO Statement
Number	
PLO1.	Disciplinary Knowledge - Capability of demonstrating comprehensive
	knowledge of mathematics and understanding of one or more discipline.
PLO2.	Communication Skills - Ability to use mathematics as a precise language
	of communication in other branches
	of human knowledge
PLO3.	Critical thinking and analytical reasoning - Ability to employ critical
	thinking, analyze the results and apply them in various problems
	appearing in different branches of mathematics.
PLO4.	Information/digital literacy - Capability to use appropriate software's to
	mathematical investigations and problem solving
PLO5.	Self-directed learning: Ability to work independently and do in-depth
	study of various notions of mathematics.
PLO6.	Problem solving: Capability to solve various models such as growth
	and decay models, radioactive decay model, drug assimilation, LCR
	circuits and population network flow problems and to provide new
	solutions using the domain knowledge of mathematics
	acquired during this programme.
PLO7.	Lifelong learning: Ability to think, acquire knowledge and skills
	through logical reasoning and to inculcate the habit of self-learning.

PSGR Krishnammal College for Women

DEPARTMENT OF MATHEMATICS

CHOICE BASED CREDIT SYSTEM (CBCS) & LEARNING OUTCOME BASED CURRICULUM FRAMEWORK (LOCF)

SYLLABUS AND SCHEME OF EXAMINATIONS – I - VI SEMESTER

2021 – 2024 Batch and Onwards

			2021 - 2024			<u> </u>	42 40									
JC.		Subject	Title of the Paper		ours per	ours	ours	n hours)	Exan	nination N	Marks	Credits				
Semester	Part	Code			ode				Instruction hours per week	Contact Hours	Tutorial Hours	Duration of Examination (in hours)	CA	ESE	TOTAL	Cremes
I		TAM2101/ HIN2101/ FRE2101	Language Paper I	Lang	6	86	4	3	50	50	100	3				
	II	ENG2101	English Paper I	Eng	6	86	4	3	50	50	100	3				
	III	TH21C01	Advanced Calculus with SCILAB	CC	5	71	4	3	50	50	100	4				
	III	TH21C02	Differential Equations and Vector Analysis with SCILAB	СС	5	71	4	3	50	50	100	4				
	III	TH21A01/ HI21A01/ ES21A01/ ES21A02/ EG21A01	Allied Mathematical Statistics –I with R/Principles of Modern Government/Indian Economic Development/Internati onal Marketing/English through Classics	GE	6	86	4	3	50	50	100	5				
	IV	NME19B1/ NME19A1/ NME20WS/ NME20GS/ NME20AS/ NME21ES	Basic Tamil/ Advanced Tamil / Women Studies/ Gandhian studies /Ambedkar studies/Introduction to Entrepreneurship	AEC	2	28	2	3	50/50	50/50	100/100	2				
II		TAM2102/ HIN2102/ FRE2102	Language Paper II	Lang	6	86	4	3	50	50	100	3				
		ENG2102	English Paper II	Eng	5	71	4	3	50	50	100	3				
	III	TH21C03	Calculus of transforms with SCILAB	СС	5	71	4	3	50	50	100	4				
	III	TH21C04	Number Theory And Summation of Series with MAPLE	СС	5	71	4	3	50	50	100	4				

	III	TH21A05/ ES21A03/ ES21A04/ ES21A05/ HI21A02/ EG21A02	Allied - Mathematical Statistics II /Economic Analysis/Econometrics/M onetary Economics/Indian Constitution/Englis h throughClassics II	GE	6	86	4	3	50	50	100	5
		**	(Self-study- Online Course)		-	-	-	-	-	-	-	Grade
	IV	21PEPS1/	Professional English for physical sciences/		3	26	4	2	50	50	100	2
		NME19B2/ NME19A2	Basic Tamil /Advanced Tamil	AEC	-	-	-	3	50		50	-
III	I	TAM2103/ HIN210 3/ FRE210 3	Language Paper III	Lang	6	86	4	3	50	50	100	3
	II	ENG210	English Paper III	Eng	5	71	4	3	50	50	100	3
	III	TH21C05	Analytical Geometry with Geogebra	CC	3	41	4	3	50	50	100	4
		TH21C06	Statics with GNU - FISICA lab	CC	4	56	4	3	50	50	100	5
		PS21A03/ PL21A01/ AS21A01	Allied -Physics / Botany /Zoology / Paper I	GE	4	56	4	3	50	50	100	4
		PS16AP1/ PL16AP 1/ AS17AP	Allied Physics Botany / Zoology / Practicals	GE	3	45						
Ш		TH21SB01/ TH21SB02 / TH21SB03 / TH21SBCE	SBS - R Programming / Data Visualization and Tableau / Python Programming / Coursera IBM Data Science /	SEC	3	41	4	2	25	75	100	3
		NM21EVS	Environmental Studies*	AEC	-	-			100	-	100	Grade
		NM21UHR	Universal Human values and Human Rights	AEC	2	26	4	2	100		100	2
			Job Oriented Course	AEC				3			Gra de	
IV	I	TAM2104/ HIN2104/ FRE2104	Language Paper IV	Lang	5	71	4	3	50	50	100	3
	II	ENG2104	English Paper - IV	Eng	6	86	4	3	50	50	100	3

			T-						•	•		
	III	TH21C07	Trigonometry, Fourier Series, Z-Transforms, Tensors and Maple applications	CC	3	41	4	3	50	50	100	4
		TH21C08	Dynamics with GNU – FISICA lab	CC	4	56	4	3	50	50	100	5
		PS21A04/ PL21A02/ AS21A02	Allied –Physics / Botany / Zoology / Paper II	GE	4	56	4	3	30	45	75	4
		PS21AP1/ PL21AP1/ AS21AP1	Allied Physics/Botany/Zoology Practicals	GE	3	45		3	25	25	50	2
	III	TH21SB01/ TH21SB02/TH 21SB03 / TH20SBCE	SBS - RProgramming / Data Visualization and Tableau / Python Programming / Coursera IBM Data Science	SEC	1	14	1	2	25	75	100	3
		COCOACT	NSS/NCC/YRC/ECOwatc h club/YiNET/Rotract/Sport s &Games								100	1
	IV		Internship				Two weeks	100	2			
	IV	NM21DTG	Design Thinking	FS	2	26	4	2	100		100	2
			Community Oriented Service		-	-	-	-	-	-	-	Grade
V	III	TH21C09	Real Analysis with Tableau	CC	7	103	2	3	50	50	100	5
		TH21C10	Abstract Algebra with Maple Applications	CC	7	103	2	3	50	50	100	5
		TH21E0 1/ TH21E0 2	Elective I- Number Theory and Numerical Methods with C/ Graph Theory with open Modelica	ELE	7	103	2	3	50	50	100	4
		TH16PROJ	Group Project	GP	4	60		_	20 Viva	80 Disser tation	100	5
	III	TH21SB02/ TH20SBCE	SBS – Data Visualization and Tableau/Coursera- IBM Data Science	SBS	3	44	1		100		100	3
		NM21CS1	Cyber Security 1	CS	2	30		3	100		100	
V		TH16AC1	Advanced Learners Course Astronomy I	ALC				3	25	75	100*	5*

		TH16AC2	Fuzzy Mathematics I	ALC		_		3	25	75	100*	5*
		TH16AC3	Topics in Fluid Dynamics I	ALC		_		3	25	75	100*	5*
		ТН16СЕ	Comprehensive Examination	ALC	Onl ine E x a m i n a t i o n	Grade	_					
			Supportive Course	SC								Subm ission of certif icate
VI	III	TH21C11	Complex Analysis with Tableau	CC	6	88	2	3	50	50	100	5
		TH21C12	Linear Algebra with Maple Applications	CC	6	88	2	3	50	50	100	5
		TH21C13	Operations Research with Tora	CC	7	103	2	3	50	50	100	5
			Library		1							
		TH21E03/ TH21E04	Elective II – Mathematical Modelling with open Modelica /Discrete Mathematics	ELE	7	103	2	3	50	50	100	5
		TH16AC4	Advanced learners course – Astronomy II	ALC	-1			3	25	75	100*	5*
		TH16AC5	Fuzzy Mathematics II	ALC				3	25	75	100*	5*
		TH16AC6	Topics in Fluid Dynamics II	ALC				3	25	75	100*	5*
	IV	TH21SB03	SBS – Data Visualization and Tableau	SBS	3	41	4	ı	100	-	100	3
										Total	3800	140

^{*} Self Study

CC – Core Courses

GE – Generic Elective

AEC – Ability Enhancing Course

ELE – Elective

CA – Continuous Assessment

ESE – End Semester Examination

SEC - Skill Enhancement Course

ALC – Advanced Learner's Course

QUESTION PAPER PATTERN

For the academic year 2021 - 23

CIA Question Paper Pattern: $2 \times 25 = 50$ Marks

One question from each unit with each question comprising of

- Two questions with a weightage of 2 marks (no choice)
- Two questions with a weightage of 6 marks (no choice)
- One question with weightage of 9 marks (Internal Choice at the same CLO level)

ESE Question Paper Pattern: $5 \times 20 = 100$ Marks

One question from each unit with each question comprising of

- One question with a weightage of 2 marks (no choice)
- One question with a weightage of 6 marks (Internal Choice at the same CLO level)
- One question with weightage of 12 marks (Internal Choice at the same CLO level)

INTERNAL COMPONENT MARKS:

Components	Marks
CIA I	7
CIA II	7
MODEL	10
ASSIGNMENT	4
SEMINAR	5
QUIZ	4
CLASS PARTICIPATION	5
APPLICATION ORIENTED/INNOVATION/CREATIVITY	5
ASSIGNMENT	
ATTENDANCE	3
TOTAL	50

RUBRICS

Rubrics for 5 Marks (Application Oriented/Innovation/Creativity Assignment)

Criteria	Marks
Originality	2
Presentation	2
References or Library Resources	1
TOTAL	5

For the academic year 2023 - 24

UG Core and Allied - (First 3 Units)

Question from each unit comprising of

One question with a weightage of 2 Marks $: 2 \times 3 = 6$

One question with a weightage of 6 Marks (Internal Choice at the same CLO level) $: 6 \times 3 = 15$

One question with a weightage of 12 Marks (Internal Choice at the same CLO level) :12x3 = 36

Total :60 Marks

ALC

Section A (Paragraph answer) (4 out of 6) 4 x 4 : 16 Marks

Section B (Essay type) 1 out of 2 : 9 Marks

Total: 25 Marks

UG Core and Allied courses:

ESE Question Paper Pattern: 5 x 20 = 100 Marks

Question from each unit comprising of

One question with a weightage of 2 Marks $:2 \times 5 = 10$

One question with a weightage of 6 Marks (Internal Choice at the same CLO level) :6 \times 5 = 30

One question with a weightage of 12 Marks (Internal Choice at the same CLO level):12x5 =60

Total:100 Marks

End Semester for UG - Advance Learner Courses

Section A: 5 questions out of 8 - open choice 5 x 5 : 25 marks

Section B: 5 questions out of 8-open choice 5x10 : 50 marks

Total : 75 marks

Internal Components

CIA Test : 10 marks (Conducted for 60 marks after 50 days)

Model Exam : 20 marks (Conducted for after 85 days 100 marks (Each

Unit 20 Marks))

Seminar/Assignment/Quiz: 10 marks
Class Participation: 7 marks
Attendance: 3 marks

Total : 50 Marks

Skill Based Subject: 100 Marks

Test 1 (Theory / Practical) :50 marks
Test 2 (Theory / Practical / Project) :50 marks

Total :100 Marks

CIA components for 2021-22 Batch with CIA: ESE pattern 50:50 Marks

RUBRICS Assignment/ Seminar

Maximum - 20 Marks (converted to 4 marks)

Criteria			2 Marks	1 Mark
Focus Purpose	Clear	Shows awareness	Shows little awareness	No awareness
Main idea	Clearly Main idea supported main idea. throughout		Vague sense	No main idea
Organisation: Overall	Well planned	Good over all organization	There is a sense of organization	No sense of organization
Content	Exceptionally well presented	Well presented	Content is sound	Not good
Style: Details and Examples	Large amounts of specific examples and detailed description	Some use of examples and detailed descriptions	Little use of specific examples and details	No use of examples

CLASS PARTICIPATION

Maximum - 20 Marks (converted to 5 marks)

Criteria	5 Marks	4 Marks	3 Marks	2 Marks	1 Mark	Points scored
Level of Engagement in Class	Student proactively contributes to class by offering ideas and asks questions more than once per class.	Student proactively contributes to class by offering ideas and asks questions once per class	Student contributes to class and asks questions occasionally	Student rarely contributes to class by offering ideas and asking no questions	Student never contributes to class by offering ideas	
Listening	Student	Student	Student	Student	Student	
Skills	listens	listens	listens when	does not	does not	
	when others	when	others talk in	listen	listen	
	talk, both in	others talk,	groups and in	when	when	

	groups and in class. Student incorporates or builds off of the ideas of others.	both in groups and in class.	class	others talk, both in groups and in class.	others talk, both in groups and in class. Student often interrupts when others speak.
Behavior	Student almost never displays disruptive behavior during class	Student rarely displays disruptive behavior during class	Student occasionally displays disruptive behavior during class	Student often displays disruptive behavior during class	Student almost always displays disruptive behavior during class
Preparation	Student is almost always prepared for class with required class materials	Student is usually prepared for class with required class materials	Student is occasionally prepared for class with required class materials	Student is rarely prepared for class with required class materials	Student is almost never prepared for class.

MAPPING OF PLOs WITH CLOs

		WIATI		<u>F PLO:</u> GRAM							
COURSE	PLO1	P	LO2	PLO	3	PL	O4	PLO5	PL	O6	PLO7
	1			RSE - T					l		-1
	1	ADVANC			<u>US '</u>				T ~		T ~
CLO1	S		M	S		S		S	S		S
CLO2	S		M	S		S		S	S		S
CLO3	S	l	M	S		S		S	S		S
CLO4	S	ľ	M	S		S		S	S		S
CLO5	S	ı	M	S		S		S	S		S
DIEEED				RSE – T					TOOIT	4 T	
CLO1	ENTIAL E(S		NS ANI M	VECT S	OR	ANA S		IS WITE	A SCIL	AB	S
CLO1	S		M	S		S		S	S		S
CLO2	S		M	S		<u>S</u>		S	S		S
CLO3	S		M	S		S		S	S		S
CLO ₄	S		M	S		<u>S</u>		S	S		S
CLO6	S		M	S		$\frac{S}{S}$		S	S		S
				RSE – T	TH21				~		
	M	ATHEM	ATICA	L STA	FIS T	ΓICS	– I W	ITH R			
CLO1	S		S	S		S		S	S		S
CLO2	S		S	S		S		S	S		S
CLO3	S		S	S	S			S	S		S
CLO4	S		S	S	S			S	S		S
CLO5	S		S	S		S		S	S		S
		,	COUR	SE - T	H21	C03		l			1
		CULUS					TH S	CILAB			
CLO1	S	M	S		S		S	5	S		S
CLO2	S	M	S		S		Ş	S	S		S
CLO3	S	S	S		S		S	S	S		S
CLO4	S	S	S		S		Ş	S	S		S
CLO5	S	S	S		S		5	S	S		S
				SE – T							
	MBER THE		1	<u>IMATI</u>		OF S		ES WITE	1	LE	-
CLO1 CLO2	<u>S</u> S	S M	S		S S		$\frac{S}{S}$		S S		S S
CLO2 CLO3	S	M	S		S		<u>S</u>		S		S
CLO4	S	S	S		S		S		S		S
CLO5	S	M	S		S		S		S		S
CLO6	S	S	S		S		S		S	S	
		I		SE - T							
	THEMATIC.			– II (Pro		ns in		ed statisti		<u>g R)</u>	G
CLO1	S	S	S		S		S		S		S

CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S
CLO5	S	S	S	S	S	S	S
CLOS				TH21C05	<u> </u>	Б	
	ANA	ALYTICAL			GEOGEB	RA	
CLO1	S	M	S	S	S	S	S
CLO2	S	M	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S
	<u>'</u>	C	OURSE -	TH21C06	•	1	
		STATIC	S WITH G	NU-FISIC	A LAB		
CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S
				TH21SB01			
		R	R PROGRA	AMMING			
CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S
		C	OURSE –	TH21C07			
FOURIE	R SERIES,	Z- TRANF	ORMS TI	ENSORS A	ND MAPL	E APPLIO	CATIONS
CLO1	S	S	S	S	S	S	S
CLO2		S	S	S	S	S	S
CLO3		S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S
				TH21C08	TC4 T 4 D		
CI O1				GNU - FIS			
CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S
				TH21SB02			
CLO1	S	S	S	OGRAMMI S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S
CECT				- TH21C09			<u> </u>
		REAL A	<u>NALYSI</u> S	WITH TA	ABLEAU		
CLO1	S	S	S	S	S	S	S
CLO2	S	S S	S S	S S	S S	S	S
		S	S	S	S		

			COURSE -	TH21C10			
	ABST	TRACT ALGE			APPLICA	ATIONS	
CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S
		C	OURSE – T	TH21E01			l e
]	NUMBE	R THEORY A	ND NUME	ERICAL M	ETHODS	WITHC	
CLO1	S	M	S	S	S	S	S
CLO2	S	S	S	M	S	S	S
CLO3	S	S	M	S	S	S	M
CLO4	S	S	S	M	S	S	S
			COURSE -		AODEL IO	٧.	
CLO1	C	GRAPH THE				1	C
	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S
			COURSE –			-	
CI O1	T 0	COMPLEX					
CLO1	S	S	S	S	S	S	S
CLO2	S	M	S	S	S	S	S
CLO3	S	S	M	S	S	S	S
CLO4	M	S	S	M	S	S	S
	T TX		COURSE –		DDI IOA	TONG	
CI O1		EAR ALGEB					
CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S
			COURSE -				
	1 ~	OPERATIO				1	
CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S
			COURSE –				
	1		MODELLI	1		1	
CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S
			COURSE –		TOC		
CI O1	C		RETE MA	1		C	C
CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S

COURSE	COURSE NAME	Category	L	T	P	Credit
CODE	CORE I – ADVANCED	Theory	71	4	-	4
TH21C01	CALCULUS WITH SCILAB					
	SEMESTER I					

> To provide fundamentals of differentiation and integration and show their significant role in physical, economical and industrial world

Prerequisite

Knowledge of limits, Differential derivatives and related formulas

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO	CLO Statement	Knowledge
Number		Level
CLO1.	Define curvature, evolutes, envelops and asymptotes	K1
CLO2.	Explain and translate integrals of physical problems	K2
CLO3.	Demonstrate and solve physical problems using Laplace Transform	К3
CLO4.	Apply special functions like Beta and Gamma to evaluate multiple integrals	К3
CLO5.	Use computational tools like SciLab to compute complex problems	K4

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1.	S	M	S	S	S	S	S
CLO2.	S	M	S	S	S	S	S
CLO3.	S	M	S	S	S	S	S
CLO4.	S	M	S	S	S	S	S
CLO5.	S	M	S	S	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

SEMESTER I CORE I

Advanced Calculus with SCILAB

Credits: 4 Hours: 71

Subject Code: TH21C01

UNIT I 14 hrs

Total differentiation – Euler's theorem on homogeneous functions - Curvature – Radius of curvature in Cartesian and polar forms – Evolutes and envelopes – Pedal equations- linear asymptotes.

UNIT II 15 hrs

Multiple integrals- Definition- Change of order of integration in double integral – change of variables in double & triple integrals - Applications to calculations of areas and volumes – Surface areas – Areas in polar coordinates - Jacobians.

UNIT III 13 hrs

Beta and Gamma integrals – their properties & relation between them - simple problems – Applications of Gamma functions to multiple integrals.

UNIT IV 15 hrs

Laplace Transform – Introduction - Definition- working rule - Piecewise continuous function- functions of exponential order and class-sufficient condition for the existence-Linearity property –some elementary functions-first shifting theorems- unit step functions-Second shifting theorem-change of scale property-derivatives –multiplication by positive integral powers of t derivatives-Division by t theorems- Laplace transforms of integrals-Initial value and final value theorem-Periodic functions-Evaluation of integrals.

UNIT V 14 hrs

Inverse Laplace transforms - Introduction-Definition - Null function definition-Uniqueness of inverse Laplace transforms-Some elementary functions-Linearity property-method of partial fractions-Heaviside expansions theorems- First translation-Second translation theorem- Change of scale property-Inverse Laplace transforms of derivatives and integrals.

Text Books

S. No	Author	Title of the book	Publishers	Year &
				Edition
1.	S. Narayanan and	Calculus Volume I	S. Viswanathan,	2019
	T. K. M Pillay		Printers & Publishers,	
			PVT.,LTD	
	Unit I			
2.	S. Narayanan and	Calculus Volume II	S. Viswanathan,	2019
	T. K. M Pillay		Printers & Publishers,	
	-		PVT.,LTD	
	Unit II & III		,	
3.	Dr. M.D. Raisinghania	Advanced	S.Chand and Company	2021
	_	Differential		
	Unit IV & V	Equations		
4.	Er. HemaRamachandran	Scilab(A free	S.Chand and Company	1 st edition
	and Achuthsankar S Nair	Software to Matlab)		&2015
	(For SciLab			
	experiments)			

Unit I	Chapter 8	Section: 1.3-1.7
	Chapter 10	Section: 2.1-2.8
	Chapter 11	Section: 1-4
Unit II Chapter 5 Chapter		Section: 1-7
	6	Section: 1.1-2.4
Unit III	Chapter 7	Section: 2.1-6

Unit IV	Part IV:- A	
	Chapter 1	Sections – 1.1 to 1.21
Unit V	Part IV:- A	
	Chapter 2	Sections -2.1 to 2.12

Reference Books

S. No	Author	Title of the book	Publishers	Year & Edition
1	Serge Lang	A First Course in Calculus	Springer Publication	2013
2	A.K. Sharma	Advanced Differential Equations	Discovery Publishing Pvt Ltd	2004
3	Shahriar	Approximately Calculus	First Indian Edition, American Mathematical Society	2012
4	N.P. Bali	Integral Calculus	Lakshmi Publication Pvt Ltd	2011
5	Johnny Heikell	Scilab for real Dummies	http://www.heikell.fi/downloads /scilabpdf.pdf	

Digital Demonstration using SCILAB

http://cajael.com/eng/control/LaplaceT/LaplaceT-1_Example_2_6_OGATA_4editio.php

Laplace Transforms with partial fraction

http://cajael.com/eng/control/LaplaceT/LaplaceT-10_Problem_B2_3_OGATA_4ed_L.php

❖ Laplace Transforms of some functions

http://cajael.com/eng/control/LaplaceT/LaplaceT-7_Example_2_17_OGATA_4ed_La.php

Solving differential equation with SciLab

MOOC learning

https://nptel.ac.in/courses/111/105/111105122/

(6 Lectures by Prof. HarishankarMahato, IIT, Kharagpur)

- Lecture 10 Improper integrals
- Lecture 11 Improper integrals
- Lecture 13 Beta Gamma functions
- Lecture 14 Beta Gamma functions
- Lecture 22 Triple integrals
- Lecture 23 Triple integrals

Note

Question paper setters to confine to the above text books only.

Pedagogy

Chalk and Talk, Seminar, Group Discussion, online courses.

Course Designers

- 1. Dr. (Mrs.) K. Sumathi, Associate Professor, Department of Mathematics
- 2. Dr.(Mrs.) S. Aiswarya, Assistant Professor, Department of Mathematics

COURSE	COURSE NAME	Category	L	T	P	Credit
CODE	CORE II - DIFFERENTIAL	Theory	71	4	-	4
TH21C02	EQUATIONS AND VECTOR					
11121002	ANALYSIS WITH SCILAB					
	SEMESTER I					

- > To learn the basics of differential equations and various techniques of solving differential equations
- > To expose the practical applications of differential equations and introduce students to the fundamentals of vector calculus
- > To show that differential equations and vector analysis are powerful tools in solving problems of physical, social and managerial sciences.

Prerequisite

- ➤ Understanding of the concepts of a function and the relationship between a function and its graph
- ➤ Understanding of differential derivatives (ordinary and partial)
- ➤ Knowledge of Functions and angles, Vector Algebra

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowle
		dge
		Level
CLO1.	Understand the fundamental concepts of differential equations	K1
	and vector Analysis and their role in modern Mathematics.	
CLO2.	Demonstrate the efficient use of techniques in solving	K2
	differential equations and applying vector differential operators	
CLO3.	Apply the problem solving techniques of differential equations and	K4
	vector analysis in diverse situations of Physics, Engineering and	
	other mathematical contexts	
CLO4.	Explain the use and applications of differential equations and/or	K3
	vector calculus to some topic related to undergraduate study,	
	employment or other experience.	
CLO5.	Develop the ability to apply differential equations to significant	K4
	applied and/or theoretical problems.	
CLO6.	Understand the various integral theorems relating line, surface	К3
	and volume integrals and about industry 4.0	

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1.	S	M	S	S	S	S	S
CLO2.	S	M	S	S	S	S	S
CLO3.	S	M	S	S	S	S	S
CLO4.	S	M	S	S	S	S	S
CLO4.	S	M	S	S	S	S	S
CLO5.	S	M	S	S	S	S	S
CLO6.	S	M	S	S	S	S	S

S- Strong; M-Medium; L-Low

SEMESTER II - CORE II DIFFERENTIAL EQUATIONS AND VECTOR ANALYSIS WITH SCILAB

Credits: 4 Hours: 71

Subject Code: TH21C02

UNIT I 14 hrs

Solution of Differential Equations of the first order and First Degree – Linear Equations with Constant Co-efficient – Application to Geometry and Mechanics. Solving simple problems using SciLab.

UNIT II 14 hrs

Homogeneous Linear Equations – Trajectories - Equations of the First Order but not of the First Degree. Solving simple problems using SciLab.

UNIT III 14 hrs

Linear Equations of Second Order – Simultaneous Differential Equations. Solving simple problems using SciLab.

UNIT IV 15hrs

Vector-Valued Functions, Vector Fields: An Introduction, Gradient, Divergence, Curl, and the Del Operator

UNIT V 14hrs

Line integrals, Surface integrals, Volume integrals using Integral theorems.

Text Books

S.	Author	Title of the book Publishers		Year &
No				Edition
1	N.P. Bali	Differential	Firewall Media, An imprint	10 th Edition,
		Equations	of Laxmi Publications Pvt,	2017
	Unit I – III		Ltd, New Delhi	
2.	Susan Jane Colley	Vector Calculus	Pearson Education, Inc	4 th Edition,
				2012
	Unit IV – V			
3.	Dr.	Scilab	S Chand and company	1 st Edition,
	HemaRamachandran	(A free Software		2015
	& Dr. Achuthsankar	to Matlab)		
	S.Nair			
4.	Lecture notes/Lab man	ual/Tutorials on Sci I	Lab	

Unit I	Chapter 2	Page No: (21 -25, 40-43,48-54,70-79,86-92,105-
		108, 116-120,141-148,154-162)
	Chapter 3	Page No:(170-178,185-189,190-195,209-213,222-
		226,235-240)

	Chapter 4	Page No:(269-279)
Unit II	Chapter 5	Page No:(286-289,297-302,308-313)
	Chapter 6	Page No:(314 -329)
	Chapter 7	Page No:(335-339,348-351,353-354)
Unit III	Chapter 8	Page No:(356-367,383-390)
	Chapter 9	Page No:(400-404,416-428)
Unit IV	Chapter 3	Sections – 3.3 to 3.5
Unit V	Chapter 6	Sections 6.1 to 6.3
	Chapter 7	Sections – 7.1 to 7.3

Reference Books

110101	Reference Books					
S. No	Author	Title of the book	Publishers	Year &		
				Edition		
1	N.M Kapur	A text book of	Pitambar Publishing	2008		
		Differential equations	Company Educational			
			Publishers, New Delhi -			
			110005.			
2	M.D Raisinghania	Advanced differential	S.Chand & Co New Delhi	2009		
		equations				
3	George F.Simmons &	Differential Equations	Tata McGraw Hill Education	Tenth		
	Steven G.Krantz	Theory, Technique and	Private Ltd	reprint		
		Practice		2011		
4	Nathaniel Coburn	Vector and Tensor	The Macmillan Company,	2012		
	ivatilatifei Coburti	Analysis	New York	2012		
~		Allalysis	New TOIK			
5	Erwin Kreyszig	Advanced Engineering	Wiley Plus	Tenth		
		Mathematics		Edition		

Digital Demonstration using SciLab

https://help.scilab.org/docs/6.0.0/en_US/ode.html

- Evaluation of ordinary differential equations https://help.scilab.org/docs/6.0.0/en_US/odeoptions.html
- Setting options for ODE solver http://www.tf.uns.ac.rs/~omorr/radovan_omorjan_003_prII/s_examples/Scilab/Gilberto/scilab04.pdf
- Vector operations in SciLab

MOOC learning

https://nptel.ac.in/courses/111/106/111106100/

(2 Lectures by Prof..Srinivasamanam, IIT, Madras)

- Lesson 1 Introduction to Ordinary differential equations
- Lesson 13 Second order ODE with constant co-efficient

https://nptel.ac.in/courses/111/105/111105122/

(4 Lessons by Prof Hari Shankar mahata, IIT Kharagpur)

- Lesson 36 Gradient Lesson 37 Curl and divergence
- Lesson 41 Directional derivatives Lesson 44 Applications to Mechanics

For Assignments/ Case Studies Only

Introduction to Industry 4.0 - Need - Reasons for Adopting Industry - Definition - Goals and Design Principles - Technologies of Industry 4.0- Skills required for Industry 4.0- Advancements in Industry 4.0 - Impact of Industry 4.0 on Society, Business, Government and People.

Reference

P. Kaliraj and T.	Higher Education for	Taylor and Francis group-	2021
Devi,	Industry 4.0 and	CRS press	
	Transformation to		
	Education 5.0		

Note

Question paper setters to confine to the above text books only.

Pedagogy

Chalk and Talk, Seminar, Group Discussion and Numerical Exercises.

Course Designers

- 1. Dr. K. Sumathi, Associate Professor, Department of Mathematics
- 2. Dr. R. Sakthikala, Assistant Professor, Department of Mathematics

COLIDGE	COURSE NAME	Category	L	T	P	Credit
COURSE	ALLIED -	Theory	86	4	-	5
CODE	MATHEMATICAL					
TH21A01	STATISTICS – I WITH R					
	SEMESTER I					

- > To introduce the basic statistical concepts and help the students to know the need for statistics and statistical analysis.
- > To describe the types of data and to discuss random variables and their distributions.

Prerequisite

Knowledge of population, sample, events and outcome.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO	CLO Statement	Knowledge
Number		Level
CLO1.	Learn the basic concepts of Set theory and Probability	K1
	Distributions	
CLO2.	Understand and formulate questions that can be addressed with	K2
	data and collect, organize, and display relevant data to answer	
	them.	
CLO3.	Critically evaluate the design, including sampling techniques	K2
	of a statistical study	
CLO4.	Effectively apply statistical software R to perform statistical	K3
	computations and display numerical and graphical summaries	
	of data sets	
CLO5.	Analyse, compute and interpret the coefficient of correlation	K4
	and the "line of best fit" for bivariate data	

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1.	S	S	S	S	S	S	S
CLO2.	S	S	S	S	S	S	S
CLO3.	S	S	S	S	S	S	S
CLO4.	S	S	S	S	S	S	S
CLO5.	S	S	S	S	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

SEMESTER I – ALLIED I ALLIED – MATHEMATICAL STATISTICS – I WITH R

Credits: 5 Hours: 86

Subject Code: TH21A01

UNIT I 17 hrs

Probability and Distributions: Introduction - Set Theory -The Probability Set Function - Conditional Probability and Independence - Random Variables - Discrete Random Variables - Continuous Random Variables.

UNIT II 17 hrs

Expectation of a Random Variable - Some Special Expectations — Important Inequalities. Multivariate Distributions: Distributions of Two Random Variables-Transformations: Bivariate Random Variables - Conditional Distributions and Expectations - Independent Random Variables - The Correlation Coefficient.

UNIT III 17 hrs

Some Special Distributions: The Binomial and Related Distributions - The Poisson Distribution- The Normal Distribution - The Bivariate Normal Distribution.

UNIT IV 17 hrs

Consistency and Limiting Distributions: Convergence in Probability- Convergence in Distribution - The Central Limit Theorem- Extensions to Multivariate Distributions.

UNIT V 18 hrs

Optimal Tests of Hypotheses: Most Powerful Tests - Uniformly Most Powerful Tests - Likelihood Ratio Tests - The Sequential Probability Ratio Test.

Text Book						
S. No	Author	Title of the book	Publishers	Year &		
				Edition		
1	Robert V. Hogg,	Introduction to	Pearson	8 th Edition,		
	Joseph W. McKean	Mathematical Statistics	Education	2019		
	and Allen T. Craig					

Unit I	Chapter 1	1.1 to 1.7
Unit II	Chapter 2	1.8 - 1.10 , 2.1 – 2.5
Unit III	Chapter 3	3.1-3.2, 3.4, 3.5.1
Unit IV	Chapter 5	5.1-5.4
Unit V	Chapter 8	8.1- 8.4

Reference Books

S. No	Author	Title of the book	Publishers	Year &
				Edition
1	B.L.Agarwal	Basic Statistics	New Age International	4 th Edition,
			Publishers	2006
2	A.K.Goon,	Fundamentals of	The World Press, Calcutta	8 th Edition,
	M.K.Gupta, Das	Statistics Vol – I		2002.
	Gupta			
3	Murray	Schaum's Outline of	Tata McGraw Hill	3 rd Edition,
	R.Spiegel, Larry	Theory and Problems	Publishing Company	2005
	J.Stephens	of Statistics	Ltd, New Delhi	

Digital Demonstration using R

http://www.r-tutor.com/elementary-statistics/numerical-measures/mean

Finding mean

 $\underline{http://www.r-tutor.com/elementary-statistics/numerical-measures/median}$

Finding median

http://www.r-tutor.com/elementary-statistics/probability-distributions/binomial-

distribution

Binomial distribution

http://www.r-tutor.com/elementary-statistics/probability-distributions/poisson-

distribution

❖ Poisson distribution

http://www.r-tutor.com/elementary-statistics/hypothesis-testing

Hypothesis testing

MOOC learning

https://nptel.ac.in/courses/111/106/111106112/

(6 Lectures by Prof., G.Srinnivasan, IIT, Madras)

- Probability
- Rules of probability
- Conditional probability
- Binomial distribution
- Poisson distribution

Note

Question paper setters to confine to the above text books only.

Pedagogy

Chalk and Talk, Seminar, Group Discussion, Numerical Exercises and Demonstration.

Course Designers

- 1. Dr. K.Sumathi, Head & Associate Professor, Department of Mathematics
- 2. Dr.D.Sasikala, Assistant Professor, Department of Mathematics

COURSE	COURSE NAME	Category	L	T	P	Credit
CODE	CORE III	Theory	71	4	-	4
TH21C03	CALCULUS OF	•				
	TRANSFORMS WITH					
	SCILAB					
	SEMESTER II					

- > To understand the practical applications of Integral transforms in solving problems of signal processing, differential and integral equations.
- > To use SCILAB effectively to solve problems involving Integral transform.

Prerequisite

➤ Knowledge in differential and integral calculus

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Learn and acquire knowledge of Integral Transforms	K1
CLO2	Understand the concepts of Fourier, Laplace, Hankel and Mellin Transforms and the formation of difference equations	K2
CLO3	Solve difference equations using single step and multistep numerical methods	К3
CLO4	Demonstrate competency to solve differential and integral equations using the Fourier, Laplace, Hankel and Mellin Transforms	К3
CLO5	Analyse and apply the Fourier, Laplace, Hankel and Mellin Transforms to solve problems arising in applied sciences& Learn to use SCILAB to solve Integral equations involving Integral transforms.	K4

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1.	S	S	S	S	S	S	S
CLO2.	S	S	S	S	S	S	S
CLO3.	S	S	S	S	S	S	S
CLO4.	S	S	S	S	S	S	S
CLO5.	S	S	S	S	S	S	S

S - *Strong*; *M* - *Medium*; *L* − *Low*

Syllabus

SEMESTER II - CORE PAPER III Calculus of Transforms with SCILAB

Credits: 4 Hours: 71

Subject Code: TH21C03

UNIT I 14 Hrs

Applications of Laplace Transforms: Introduction-Solutions of Ordinary Differential Equations-Partial Differential Equations, Initial and Boundary Value Problems-Solutions of Integral Equations-Solutions of Boundary Value Problems-Evaluations of Definite Integrals - Simple Problems using SCILAB.

UNIT II 14 Hrs

Fourier Transforms and Their Applications: Introduction-The Fourier Integral Formulas-Definition of the Fourier Transform and Examples-Fourier Transforms of Generalized Functions-Basic Properties of Fourier Transforms-Applications of Fourier Transforms to Ordinary Differential Equations-Solutions of Integral Equations-Solutions of Partial Differential Equations - Simple Problems using SCILAB.

UNIT III 14 Hrs

Hankel Transforms and Their Applications: Introduction-The Hankel Transform and Examples-Operational Properties of the Hankel Transform-Applications of Hankel Transforms to Partial Differential Equations.

UNIT IV 14 Hrs

Mellin Transforms and Their Applications: Introduction-Definition of the Mellin Transform and Examples-Basic Operational Properties of Mellin Transforms-Applications of Mellin Transforms-Application of Mellin Transforms to Summation of Series-Generalized Mellin Transforms.

UNIT V 15 Hrs

Difference Equations: Introduction-Order of Difference Equation-Degree of Difference Equation-Solution to Difference Equation-Formation of Difference Equations-Linear Difference Equations with Constant Coefficients-Non-Homogeneous Linear Difference Equations with Constant Coefficients.

Toxt	Rooks

S.	Author	Title of the book	Publishers	Year &	
No				Edition	
1.	Lokenath Debnath and	Integral	Chapman &	3 rd	
	Dambaru Bhatta	Transforms and	Hall/CRC	Edition,	
		their Applications		2015	
	Unit I- IV				
2.	Dr. V.N. Vedamurthy and Dr.	Numerical	Vikas Publishing	2015	
	N. Ch. S. N. Iyengar	Methods	House Pvt. Ltd.		
	_				
	Unit V				
3	Lecture notes/Lab manual/Tutorials on SciLab				

UNIT I	Chapter 4	4.1 -4.6(Except Page. No. 205-212,214-219, 232-234, 237-238)
UNIT II	Chapter 2	2.1 – 2.5 and 2.10-2.12 (Except Page. No. 91-98)
UNIT III	Chapter 7	7.1 - 7.4
UNIT IV	Chapter 8	8.1-8.4 and 8.6, 8.7
UNIT V	Chapter 10	10.1 to 10.8

Reference Books

S. No	Author	Title of the book	Publishers	Year &
				Edition
1	B.S. Grewal	Higher Engineering	Khanna Publishers, New Delhi.	39 th Edition,
		Mathematics		2007
2	Veerarajan. T	Engineering	Tata McGraw Hill, New Delhi.	3 rd Edition,
		Mathematics		2004
3	Kreyszig. E	Advanced	John wiley and sons, (Asia) Pvt.	2006
		Engineering	Ltd., Singapore.	
		Mathematics		
4	J. K. Goyal and K.P. Gupta	Integral Transform	PragatiPrakashanEducational	2015
			publishers, Meerut	
5	M.K.Venkataraman	Numerical Methods	National Publishing Company	1990
		in Science &		
		Engineering		

Digital Demonstration using SciLab

https://help.scilab.org/docs/6.0.0/en_US/intg.htm

Evaluation of definite integrals

https://help.scilab.org/docs/5.5.2/en US/fft.html

❖ Fast Fourier transforms

https://www.bragitoff.com/2016/03/fourier-series-and-scilab/

Fourier series and scilab

https://www.bragitoff.com/2016/03/calculating-fourier-series-and-plotting-it-scilab/

❖ Fourier series and plotting

https://www.bragitoff.com/2016/03/polynomial-fitting-scilab/

polynomial fitting using scilab

MOOC learning

https://nptel.ac.in/courses/111/102/111102129/

(6 Lectures by Prof..Sarthoksircar IIT, Delhi)

- Introduction to Fourier transforms Part I
- Introduction to Fourier transforms Part II
- Applications of Fourier transforms Part I
- Introduction to Laplace Transforms Part I
- Introduction to Laplace Transforms Part II
- Applications of Laplace Transforms Part I

Note

Question paper setters to confine to the above text books only.

Pedagogy

Chalk and Talk, Seminar, Group Discussion and Numerical Exercises.

Course Designers

- 1. Dr. (Mrs.) K. Sumathi, Associate Professor, Department of Mathematics
- 2. Dr.(Mrs) G. Arthi, Assistant Professor, Department of Mathematics

COURSE	COURSE NAME	Category	L	T	P	Credit
CODE	CORE IV					
TH21C04	NUMBER THEORY	Theory	71	4	-	4
	AND SUMMATION					
	OF SERIES WITH					
	MAPLE					
	SEMESTER II					

- > To orient the students to learn about the real and complex number systems and also some of the basic notation of set theory.
- > To enable the students to learn about the convergence and divergence of the series and develop problem solving skills.

Prerequisite

➤ Knowledge in basic properties of the real numbers that lead to the formal development of real analysis and various methods in terms of convergence and divergences.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO	CLO Statement	Knowledge
Number		Level
CLO1.	Know the concept of convergence and limits that are	K1
	applicable to sequences, series, differentiation and integration	
CLO2.	Determine the convergence or divergence of sequences and series	K2
CLO3.	Analyse the precise proofs of results that arise in the context of real analysis	K2
CLO4.	Apply convergence tests to infinite series	K2
CLO5.	Solve the problems related to convergence / divergence.	К3
CLO6.	Analyse how abstract ideas and rigorous methods in real analysis can be applied to practical problems	K4

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1.	S	S	S	S	S	S	S
CLO2.	S	M	S	S	S	S	S
CLO3.	S	M	S	S	S	S	S
CLO4.	S	S	S	S	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

SEMESTER II - CORE IV

NUMBER THEORY AND SUMMATION OF SERIES WITH MAPLE

Credits: 4 Hours: 71

Subject Code: TH21C04

UNIT I 14 hrs

The Real and Complex number systems: Introduction – The field axioms – The order axioms – Geometric representation of real numbers – intervals – integers- the unique factorization theorem for integers – rational numbers- irrational numbers – upper bounds, maximum element, least upper bound – the completeness axiom – some properties of supremum – properties of the integers deduced from completeness axiom – the Archimedean property of the real number system – rational number with finite decimal representation – Finite decimal approximation to real numbers -infinite decimal representation of real numbers – Absolute values and the triangular inequality – The Cauchy – Schwarz inequality – Plus and minus infinity and the extended real number system ${\bf R}^*$ - Complex numbers – Geometric representation of complex number – The imaginary unit – Absolute value of a complex number – Impossibility of ordering the complex numbers – Complex exponentials – Further properties of complex exponentials – The argument of a complex number – Integral powers and roots of complex numbers – complex logarithms – complex powers – Complex sines and cosines – Infinity and the extended complex plane ${\bf C}^*$

UNIT II 14 hrs

Some Basic Notations of Set theory: Introduction – Notations – Ordered pairs – Cartesian product of two sets – Relations and functions – Further terminology concerning functions – One – to – one functions and inverses – Composite functions – Sequences – Similar sets – Finite and infinite sets – Countable and uncountable sets – Uncountability of the real number system – set algebra – Countable collections of countable sets

UNIT III 15 hrs

Convergence and divergence of series: Definition of Infinite Series – Elementary results – Series of positive terms - Comparison tests — Cauchy's condensation test – D'Alembert's ratio test - Cauchy's root test - Raabe's test - Absolute convergence.

UNIT IV 16 hrs

Theory of Equations: Remainder Theorem - Roots of an Equation - Relations connecting the Roots and Coefficients - Symmetric function of roots - Transformations of equations - Reciprocal equations - Removal of terms - Transformations in General - Descarte's rule of signs.

UNIT V 12 hrs

Rolle's Theorem - Multiple roots - Strum's theorem (statement only) - Strum's functions - Horner's method.

Text Book

S. No	Author	Title of the	Publishers	Year & Edition
		book		
1	Tom. M. Apostol	Mathematica	Narosa Publishing House	2002
		1 Analysis		
	Unit I & II	-		
2	T.K.	Algebra Vol	S.Viswanathan, Printers &	2017
	Manicavachagom	I	Publishers, PVT., LTD	
	Pillay, T. Natarajan			
	& K.S. Ganapathy			
	Unit III – V			

UNIT I	Chapter 1	Sections 1.1 -1.33
UNIT II	Chapter 2	Sections 2.1 – 2.15

UNIT III	Chapter 2	Sections 8 - 19, 21 - 24
UNIT IV	Chapter 6	Sections 1 to 12, 15 to
		19, 21& 24
UNIT V	Chapter6	Sections 25,26, 27, 30

Reference Books

S. No	Author	Title of the book	Publishers	Year &
				Edition
1.	R.R.Goldberg	Methods of Real	Oxford University Press	2018
		Analysis		
2	Walter Rudin	Principles of	Tata McGraw Hill	2013
		Mathematical Analysis	Publications	
3.	P.N. Chatterjee	Algebra	Rajhans Agencies, Meerut	2010
4.	S.Barnard	Higher Algebra	Enlarged Edition, A.I.T.B.S	2004
	&J.M.Child		Publishers & Distributors	
5.	Hall & Knights, R	Higher Algebra	Arihant Prakashan, Meerut	2008
	Knight			

Digital Demonstration using maple

https://www.maplesoft.com/applications/view.aspx?sid=3981&view=html

- Convergence of series
- * Radius of convergence
- Cauchy's root test
- * Ratio test
- Integral test

https://www.maplesoft.com/support/help/Maple/view.aspx?path=convert/base

Conversion of numbers with various bases

MOOC learning

https://www.academia.edu/5241092/VISUALIZING_THE_BEHAVIOR_OF_INFINITE

SERIES_AND_COMPLEX_POWER_SERIES_WITH_THE_GEOGEBRA

https://nptel.ac.in/courses/111/101/111101134/

(6 Lectures by Prof I.K. Rana, IIT Bombay)

- Real Numbers and sequences Part I
- Real Numbers and sequences Part II
- Real Numbers and sequences Part III
- Convergence of sequences Part I
- Convergence of sequences Part II
- Convergence of sequences Part III

Note

Question paper setters to confine to the above text books only.

Pedagogy

Chalk and Talk, Seminar, Group Discussion, online courses.

Course Designers

1.Dr. (Mrs.) K. Sumathi, Associate Professor, Department of Mathematics

2. Dr.(Mrs) S.Aiswarya, Assistant Professor, Department of Mathematics

COURSE	COURSE NAME	Category	L	T	P	Credit
CODE	MATHEMATICAL STATISTICS	Theory	86	4	-	5
TH21A05	– II (Problems in Applied statistics using R)					

- ➤ To introduce statistical techniques of analysis and inference that are useful in many areas of scientific research.
- To present descriptive statistics and utilize the probability distributions to perform statistical inference.

Prerequisite

- > Critically evaluate the design, including sampling techniques, of a statistical study,
- ➤ Effectively use statistical software R to perform statistical computations and display numerical and graphical summaries of data sets

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO	CLO Statement	Knowledge
Number		Level
CLO1	Construct and interpret deviations and proportions for populations,	K2
CLO2	Explain and successfully apply all aspects of parametric testing techniques including single and multi-sample tests for mean and proportion	K2
CLO3	Explain and successfully apply all aspects of appropriate non-parametric tests.	K2
CLO4	Understand, apply and compute maximum likelihood estimation	К3
CLO5	Take up a career in statistical analysis	K4

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S
CLO5	S	S	S	S	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

SEMESTER II – ALLIED – II

ALLIED – MATHEMATICAL STATISTICS - II

(Problems in Applied statistics using R)

Credits: 5 Hours: 86

Subject Code: TH21A05

UNIT I 17 hrs

Linear Regression - Introduction - Simple Linear Regression Model - Problems-Estimating the Regression Parameters-Error Random Variable- Prediction Intervals for Future Responses -problems- Coefficient of Determination- Sample Correlation Coefficient.

UNIT II 17 hrs

Testing Statistical Hypotheses - Introduction - Hypothesis Tests and Significance Levels-Problems - Tests Concerning the Mean of a Normal Population-Case of Known Variance-Problems - One-Sided Tests - The *t* Test for the Mean of a Normal Population-Case of Unknown Variance -- Hypothesis Tests Concerning Population Proportions- Two-Sided Tests of *p*. Hypothesis Tests Concerning Two Populations: Introduction- Testing Equality of Means of Two Normal- Populations: Case of Known Variances-Problems.

UNIT III 17 hrs

Testing Equality of Means: Unknown Variances and Large Sample Sizes-Problems - Testing Equality of Means: Small-Sample Tests when the Unknown Population Variances Are Equal- Paired-Sample t Test -Testing Equality of Population Proportions — Problems.Analysis of Variance - Introduction - One-Factor Analysis of Variance- Remark on the Degrees of Freedom - Two-Factor Analysis of Variance: Introduction and Parameter Estimation- Two-Factor Analysis of Variance: Testing Hypotheses.

UNIT IV 18 hrs

Chi-Square Goodness-of-Fit Tests- Introduction -- Chi-Squared Goodness-of-Fit Tests - Testing for Independence in Populations Classified According to Two Characteristics. Quality Control - Introduction - The X Control Chart for Detecting a Shift in the Mean -Problems - When the Mean and Variance Are Unknown- SControl Charts - Problems - Control Charts for Fraction Defective .

UNIT V 17 hrs

Vital Statistics-Definition-Utility of vital statistics-Measures of population and Vital statistics-Introduction-Measures of population - Measures of vital statistics - Mortality Rates -Fertility Rates.

Text Books

S. No	Author	Title of the book	Publishers	Year & Edition
1	Sheldon M Ross	Introductory Statistics	Elsevier	3 rd Edition, 2010
1.	Sheldon W Ross	Unit – I to IV	Lisevici	5 Edition, 2010
2.	Veer Bala Rastogi	Biostatistics	Medtech	3 rd Edition, 2015
		Unit - V		

UNIT I	Chapter 12	Sections: 12.1 - 12.3,12.7,12.8, 12.9
UNIT II	Chapter 9	Sections: 9.1-9.5
	Chapter 10	Sections: 10.1-10.2
UNIT III	Chapter 10	Sections: 10.3-10.6
	Chapter 11	Sections: 11.1-11.5
UNIT IV	Chapter 13	Sections: 13.1-13.4, 15.1-15.3

UNIT V	Chapter 20	Sections: 20.2., 20.2.1., 20.2.2
	Chapter 21	Sections: 21.1-21.5

Reference Books

S. No	Author	Title of the book	Publishers	Year & Edition
1.	Fundamentals of	S.C.Gupta and V.K.Kapur	Sultan Chand & sons, New Delhi.	11 th Edition, 2014
	Mathematical Statistics			
2.	E.L.Lehmann Joseph P.Romano	Testing Statistical Hypotheses	Springer Private Ltd,	3 rd Edition, 2009
3.	Murray R.Spiegel Larry J.Stephens	Theory and problems of Statistics	Tata McGraw Hill Publishing Company Ltd	3 rd Edition, 2008

Digital Demonstration with R and MOOC learning

$\underline{https://nptel.ac.in/courses/111/104/111104120/}$

(6 lessons by Prof. Shalalb, IIT Kanpur)

- Lesson 03 Calculation of Data vectors
- Lesson 04 Built in commands and Data Handling
- Lesson 10 Bar Diagram
- Lesson 11 Subdivided Bar diagram and Pie diagram
- Lesson 21 Co-efficient of variation and Boxplot
- Lesson 30 Rank correlation

Note

Question paper setters to confine to the above text books only.

Pedagogy

Chalk and Talk, Seminar, Group Discussion and Numerical Exercises.

Course Designers

- 1. Dr.(Mrs). C.R.Parvathy, Associate Professor, Department of Mathematics
- 2. Mrs. S.Lakshmi, Assistant Professor, Department of Mathematics

COURSE CODE	COURSE NAME – CORE V ANALYTICALGEOMETRY WITH GEOGEBRA	Category	L	T	P	Credit
TH21C05		Core	41	4	-	4

- > To provide a comprehensive and clear description of geometrical objects
- > To introduce equations for various shapes used in physics and engineering.

Prerequisite

Knowledge in Basic vector algebra, trigonometric functions and identities

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO	CLO Statement	Knowledge
Number		Level
CLO1	Recall and classify geometric shapes using correct mathematical language. Draw and label figures based on verbal descriptions.	K1
CLO2	Understanding various equations of Planes, Straight Line, Sphere, Cone, and Cylinder.	K2
CLO3	Applying theorems involving vertical angles, Complementary angles, supplementary angles, transversals, internal angle measure in triangles, circles and tangent lines to circles and applying geometric concepts to solve problems.	К3
CLO4	Analyse transform from polar co-ordinate system to rectangular co-ordinatesystem and vice versa.	K4

Mapping with Programme Learning Outcomes

CLOs/POs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1	S	M	S	S	S	S	S
CLO2	S	M	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S

S- Strong; M-Medium; L-Low

SEMESTER III– CORE PAPER ANALYTICAL GEOMETRY WITH GEOGEBRA

Credits: 4 Hours: 41

UNIT I 8 hrs

Polar Coordinates: Introduction - Definition of Polar Coordinates - **Relation between** Cartesian Coordinates and Polar Coordinates - Polar Equation of a Straight Line - Polar Equation of a Straight Line in Normal form - Circle - Polar equation of a Conic - Simple Problems using Geogebra

UNIT II 8 hrs

Planes: Introduction – General Equation of a plane - General Equation of a plane passing through a given point - Equation of a plane in Intercept form - **Equation of a plane in Normal form** – Angle between two planes – Perpendicular distance from a point on a plane – Plane passing through three given points - To find the Ratio in which the plane joining the points (x_1,y_1,z_1) and (x_2,y_2,z_2) is Divided by the Plane aX+by+cz+d=0 - Plane Passing through the intersection of two given planes – Equation of the planes which bisect the angle between two given planes – Condition for the Homogenous Equation of the Second Degree to Represent a pair of Planes- Illustrative examples – Simple Problems using Geogebra

UNIT III 8 hrs

Straight Line: Introduction – **Equation of a Straight Line in Symmetrical Form** - Equation of a Straight Line Passing Through the Two Given Points - Equation of a Straight Line Determined by a pair of planes in Symmetrical Form – Angle between a Plane and a Line – Condition for a line to be parallel to a Plane – Condition for a line to lie on the plane - To find the Length of the Perpendicular from a Given Point on a Line – Coplanar Lines – Skew Lines – Equation of Two Non-intersecting Lines

Intersection of Three Planes – Conditions for Three Given Planes to form a Triangular Prism –
 Illustrative Examples – Simple Problems using Geogebra

UNIT IV 8 hrs

Sphere: Definition of Sphere – The Equation of a Sphere with centre at (a, b, c) and radius r – Equation of a sphere on the Line Joining the points (x_1,y_1,z_1) and (x_2,y_2,z_2) as Diameter – Length of the Tangent from $P(x_1,y_1,z_1)$ the Sphere $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$ - Equation of the Tangent Plane at (x_1,y_1,z_1) to the Sphere $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$ - Section of a Sphere by a Plane – Equation of a Circle – Intersection of Two Spheres – Equation of a Sphere Passing through a Given Circle – Condition for Orthogonality of Two Spheres – Radical Plane – Coaxal System – Illustrative Examples – Simple Problems using Geogebra.

UNIT V 9 hrs

Cone: Definition of Cone – **Equation of a Cone with a given Vertex and a given guiding curve** – Equation of a cone with its vertex at the origin – Condition for the General Equation of the Second Degree to Represent a Cone – Right Circular Cone – Tangent Plane – Reciprocal Cone.

Cylinder: Definition – Equation of a Cylinder with a Given Generator and a given guiding curve – Enveloping Cylinder – Right Circular Cylinder – Illustrative – Simple Problems using Geogebra.

Text Books

1.	P.R.VITAL	Analytical Geometry 2d	Pearson Publication			
		and 3d (All Five Units)				
2.	Department of Mathematics	Lab Manual on GEOGEBRA				
	Geogebra Manual –The Official Manual of Geogebera					
3.	Research.shu.ac.uk/geogebra/GIF–Guides/officialGeogebramanual.pdf(2011)					

Unit I: Chapter9 Unit II: Chapter 12 Unit III: Chapter13 UnitIV:Chapter14 UnitV:Chapter15 &16

Reference Books

1	V.V.Koney	Linear Algebra,	TPUPress,2009
		Vector Algebra and	
		Analytical Geometry	
2	P.Duraipandian,	Analytical Geometry	Emerald Publishers, 2010
	Laxmi	-Three Dimensional	
	Duraipandian &		
	D.Muhilan		
	D Cl ++ ;	A 1 4' 1 C	N D 11: 1: 11 2011
3	D.Chatterjee	Analytical Geometry-	Narosa Publishing House,2011
		Two and Three	
		Dimensions	
4	George.F.Simmons	Calculus with	Second Edition
		Analytical Geometry	
5	Shanti Narayan	Analytical Solid	Fifteenth Edition, S.Chand &
		Geometry	Company Ltd, 2009

MOOClearning

Tangent, Normal: https://nptel.ac.in/courses/111/104/111104095/

E- Content

- 1. Relation between Cartesian Coordinates and Polar Coordinates : https://www.youtube.com/watch?v=Oh2DefOhcA&ab
 - 2. Equation of a plane in Normal form: https://www.youtube.com/watch?v=2sZKZHyaQJ8&abhttps://www.youtube.com/watch?v=AEZq5uLhbIU&ab
 - 3. Equation of a Straight Line in Symmetrical Form: https://www.youtube.com/watch?v=AlAReyCFskU&ab

- 4.The Equation of a Sphere with centre at (a, b, c) and radius r :https://www.youtube.com/watch?v=WhYX0T_UqBQ&ab
- 5.Equation of a Cone with a given Vertex and a given guiding curve: https://www.youtube.com/watch?v=XQi6ul9-nJo&ab

Pedagogy:

Chalk and Talk, Seminar, Group Discussion, Numerical Exercises, Quiz.

- 1. Mrs.M.MohanaPriya, Assistant Professor, Department of Mathematics (UG-SF)
- 2. Mrs.S.Narmatha, Assistant Professor, Department of Mathematics (UG-SF)

COURSE	COURSE NAME - CORE VI	Category	L	T	P	Credit
CODE	STATICS WITH GNU- FISICA					
TH21C06	LAB	Theory	56	1	_	5
		I fiedly	30	7	-	

➤ To promote conceptual understanding and problem solving skills, the course contains many interactive elements.

Prerequisite

> Knowledge in forces acting at a point, rigid body, vector algebra and centre of gravity.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO	CLO Statement	Knowledge
Number		Level
CLO1	Recall the basic principles and concepts of statics to develop real concepts	K1
CLO2	Understand the relation between constraints imposed by supportive forces and develop the ability to describe position, forces and moments. Select suitable reference coordinate axes, construct free body diagrams.	K2
CLO3	Apply knowledge of mathematics, physical sciences and an ability to recognize, formulate and solve engineering problems.	К3
CLO4	Analyse the properties (components, resultants and moments) of a force and force systems in 2D & 3D. Solve the properties (centroid, centre of gravity and moment of inertia) of areas, lines and volumes and apply these properties in equilibrium problems. Gain ability to apply the results from physical models to create real target systems	K4

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S

S- Strong; M- Medium; L- Low

SEMESTER III – CORE PAPER VI STATICS with GNU –FISICA Lab

Credits:5 Hours: 56

Subject Code:TH21C06

UNIT I 11 Hrs

Forces acting at a point: Resultant and components – Parallelogram of forces – Triangle of forces – Polygon of forces – Lami's Theorem – An extended form of the parallelogram law of forces – **Resolution of a force** – Components of a force along two given directions – Theorem on Resolved parts – Resultant of any number of forces and coplanar forces acting at a point: Graphical and Analytical method – Condition of **Equilibrium of any number of forces acting upon a particle** - *Simple Problems using GNU - fisicaLab*.

UNIT II 11Hrs

Parallel Forces and Moments: Introduction – The resultant of two like, unlike and unequal parallel forces acting on a rigid body – **Moment of a force** – Physical significance and Geometrical representation of a moment – **Varigon's theorem of moments** – Generalised theorem of moments. Couples: Definition – Equilibrium and Equivalence of two couples – couples in parallel planes – Representation of a couple by a vector - **Resultant of a Couple and a Force** - *Simple Problems using GNU - fisicaLab*.

UNIT III 11 Hrs

Equilibrium of Three Forces Acting on a Rigid body: Rigid body subjected to any three forces – Three coplanar forces – Procedure to be followed in solving any statistical problem – Two Trigonometrical theorems. **Coplanar forces: Introduction – Reduction of any number of coplanar forces** – Condition and Alternative condition for a system of forces to reduce to a single force or to a couple – Change of the base point – Equation to the line of action of the resultant - *Simple Problems using GNU–fisicaLab*.

UNIT IV 11 Hrs

Friction: Introduction – Statical, Dynamical and limiting friction – coefficient of friction – Angle of friction – Cone of friction - Equilibrium of a particle on a rough inclined plane – Equilibrium of a body on a rough inclined plane under a force parallel to the plane – Equilibrium of a body on a rough inclined plane under any forces. Centre of gravity: Centre of Like Parallel Forces – Centre of mass or centre of Inertia – Distinction between centre of gravity and centre of mass – The centre of gravity of a body – Determination of uniqueness of the centre of gravity in simple cases – Centre of gravity by integration - Simple Problems using GNU – fisicaLab.

UNIT V 12 Hrs

Stability of equilibrium: Stable, Unstable and Neutral equilibrium – Nature of equilibrium of a rigid body supported at one fixed point – conditions of stability for a body with one degree of freedom. **Equilibrium of strings:** Equation of the common catenary – Tension at any point – Geometrical properties of the common catenary - *Simple Problems using GNU - fisicaLab*.

Text Books

S.	Author	Title of the	Publishers			
No		book				
1.	Dr.M.K.Venkataraman	A Text Book	Agasthiar Publications			
		of Statics	(Eleventh edition)(2014)			
2	https://www.gnu.org/software/fisicalab/manual/en/fisicalab.pdf					

Reference Books

S.	Author	Titleofthe	Publishers
No		book	
1.	K.Viswanatha Naik & M.S.Kasi	Statics	EmeraldPublishers,1992
2.	N.P.Bali	Statics	Golden Mathematics Series,
			Laxmipublications,1992

UNITI : Chapter2:Sections 1to 16

UNITII : Chapter3:Sections 1 to 13, Chapter4: Sections1 to 10
 UNITIII : Chapter5: Sections 1 to 5, Chapter6: Sections1 to 9
 UNITIV : Chapter7:Sections 1 to 12, Chapter8:Sections 1 to 6&18
 UNITV : Chapter10:Sections 1 to 3, Chapter11: Sections1 to 6

MOOCCourses

https://nptel.ac.in/courses/122/102/122102004/#

(6 LecturesbyProf.R.K.Mittal,IITDelhi)

- Lecture 1 Preliminary concepts
- Lecture 2 Vector Analysis
- Lecture 3 Analysis of forces
- Lecture 4Analysis of Equilibrium
- Lecture 13 Moments and product of Inertia
- Lecture 16 Stability of Equilibrium

E-Content

- 1. Resolution of a force
 - i) https://www.youtube.com/watch?v=Nc8ZthC65xs
 - ii) https://www.youtube.com/watch?v=2-R0erl1cVw
- 2. Equilibrium of any number of forces acting upon a particle
 - i) https://www.youtube.com/watch?v=fWK3JZfpR-Y
- 3. Moment of a force

i)https://www.youtube.com/watch?v=iy5CeQa7JWw

<u>ii)https://www.khanacademy.org/science/physics/torque-angular-momentum/torque-tutorial/v/moments</u>

- 4. Resultant of a Couple and a Force
 - i) https://www.youtube.com/watch?v=oueKQ5-dJQc
 - ii) https://www.rpi.edu/dept/core-eng/WWW/IEA/f15/lectures/Lecture11.pdf
- 5. Varigon's theorem of moments_
 - i)https://www.youtube.com/watch?v=JJX3-af_JQw
- 6. Coplanar forces
 - <u>i)https://www.youtube.com/watch?v=UlKGy-SPmrU</u>
 - ii)https://www.youtube.com/watch?v=S_iG8VlaIXE
- 7. Angle of friction
 - i)https://www.youtube.com/watch?v=SK0FNS9seqA
 - _ii)https://www.youtube.com/watch?v=qyS54OwpiI4
- 8. Centre of gravity
 - i)https://www.youtube.com/watch?v=-OTix-fhEUE
- 9. Equilibrium of strings
 - i) https://www.youtube.com/watch?v=A4Db16NcHiI
 - ii) https://www.youtube.com/watch?v=-lIUiE5WY3o

Pedagogy:

Chalk and talk, seminar, group discussion, numerical exercises and quiz.

- 1. Dr.K.Sumathi, Associate Professor, Department of Mathematics
- 2. Dr.R.Sakthikala, Assistant Professor, Department of Mathematics

		CATEGORY	L	T	P	CREDIT
COURSE CODE TH21SB01	COURSE NAME - R Programming Semester III	Theory	28	4	13	3

To extract valuable information for use in strategic decision making

Course Learning Outcomes

Upon the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Identify the basics of R	K1
CLO2	Explain the use of data to find the statistical measures	K2
CLO3	Apply various concepts to write programs in R.	К3
CLO4	Analyze data and generate reports based on the data.	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

Semester III R Programming

Credits: 3 Hours: 41

Subject code: TH21SB01

OBJECTIVE

To enhance career opportunities for the students by promoting skills in R programming relevant to big data analytics

UNIT I

9 hrs (6 L+3 P)

Exploring R Basics- Introduction- Getting started-R Studio-**R basic data types**-R operators- R objects Vectors-list, arrays-Matrix- factors-Data frame- R file formats- Importing and Exporting files – Simple programs related to the following topics

- Creating Vectors, Matrices, Factors
- ❖ Import Data, copy data from Excel to R

❖ Working with variables and Data in R

UNIT II 7 hrs (5 L + 2P)

Data Visualization in R- Exploratory data Analytics- **Lattice package**- Data sets- different types of diagrams in Statistics - Simple programs related to the following topics

❖ Bar charts and pie charts in R, Histograms in R, plotting of graphs

UNIT III 7 hrs (5 L +2P)

Statistical Measures – **Introduction** – Understanding data distribution – Use cases- Central Tendency Measure - Simple programs related to the following topics

- Summary statistics in R: Mean, Median, Mode
- Frequencies

UNIT IV 9 hrs (6 L +3P)

Measures of Variability - Standard deviation - **Probability distributions**. - Simple programs related to the following topics

- Standard Deviation, Range, Quartile Deviation
- t-Test
- ANOVA
- Chi-Square

UNIT V 9 hrs(6 L +3P)

Regression Analysis – **Data types of regression** – Linear regression- Inferential Analysis-Residuals and coefficients- plot Diagnostics- Multi linear regression using ANOVA.- Simple programs related to the following topics

- Correlation
- Regression

Text Book

S.No	Author	Title of the book	Publishers
1	V.Bhuvaneswari	Data Analytics with R Step by Step	Lean
		Unit I: Chapter 3,Pg no.21-45	Publishers,2016
		Unit II: Chapter 4 Pg no.49-67	
		Unit III: Chapter 5 Page No. 83-96	
		Unit IV: Chapter 5 Page No. 97-106	
		Unit V: Chapter 6 Page No. 107-115	

Reference Books

Book Name	Author	Publisher	Year & Edition
The Art of R Programming	Norman Matloff	No Starch Press	2011
The R Book	Michael J. Crawle	Wiley	2008
Statistical Analysis with R.	M. John	Tata McGraw Hill Publishing Co. Ltd	October 2010
Learning R	Richard Cotton	O'Reilly Media	September 2013

Digital learning

- 1. R basic data types –
- i) Learn about the R Data Types | R Tutorial #3 Bing video
- ii) Data Science With R Tutorial | Lesson 4 R Data Structures | Simplificarn Bing video
- 2.Lattice package
- i)Lattice Graphs in R Bing video
- 3. Introduction
- i)Introduction to R Studio; Basic Summary Statistics Bing video
- 4. Probability distributions
- i)Introduction to R: Probability Distributions Bing video
- ii) Using and exploring probability distributions using R Bing video
- 5. Data types of regression
- i) Linear Regression in R | Linear Regression in R With Example | Data Science
- Algorithms | Simplilearn Bing video
- ii) How To Do Simple Linear Regression In R Full R Tutorial! Bing video

- 1. Dr. K.Sumathi, Associate Professor, Department of Mathematics.
- 2. Dr. C.R.Parvathy, Assistant Professor, Department of Mathematics

COURSE CODE TH21A12	COURSENAME- ALLIED MATHEMATICS FOR PHYSICS I	Category	L	Т	P	Credit
	PHYSICST	Theory - Allied	101	4	-	5

> To introduce the fundamentals concepts of vector calculus, matrices, Laplace transforms and tensors which acts as a tool for understanding basic theories in theoretical physics

Prerequisite

➤ Knowledge in basic concepts of calculus and matrices

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO	CLO Statement	Knowledge
Number		Level
CLO1	Recall the knowledge of calculus, vectors, vector calculus and	K1
	these basic mathematical structures which are essential in solving	
	problems in various branches of Physics as well as in engineering.	
CLO2	Understanding mathematical tools like calculus, integration, series	K2
	solution approach, special function and prepare the student to solve	
	problems which model physical phenomena.	
CLO3	Apply problem-solving skills that are required to solve different	К3
	types of Physics related problems with well-defined solutions. and	
CLO4	Analyze and tackle open-ended problems that belong to the	K4
	disciplinary area boundaries using mathematical equation risen out	
	of it.	

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	S	S	S	S
CLO2	S	S	S	S	S	S
CLO3	S	S	S	S	S	S
CLO4	S	S	S	S	S	S
CLO5	S	S	S	S	S	S

S- Strong; M- Medium; L-Low

Syllabus

SEMESTERIII- ALLIED

MATHEMATICS FOR PHYSICS-I

Credits: 5 Hours: 101

Subject Code: TH21A12

UNIT I 20 hrs

Vector Calculus:Scalar and vector point functions - Differentiation of vectors -Differential vector Operators - Directional derivative: **Gradient, Divergence and curl**-MAPLE Applications Stepwise Solutions of Vector Calculus.

UNIT II 20 Hrs

Integration for vectors: Line, Surface and Volume integrals - Theorems of Gauss, Green's and Stoke's (Statement only)-Verification of Simple problems-MAPLE Applications-Stoke's problem.

UNIT III 20 Hrs

Laplace Transforms: Definition –Laplace Transform of e^{at} , cosat, sinat, coshat, sinhat, t^n , n a positive integer – L[f'(t)], L[f''(t)],...., $L[f^n(t)]$ – Laplace transform of e^{at} cosbt, e^{at} sinbt and $e^{at}t^n$. **Inverse Laplace transforms of standard functions**. Solving differential equations of second order with constant coefficients using Laplace transform.

UNIT IV 20 Hrs

Matrices: Eigen values and Eigen vectors-Cayley Hamilton theorem(without proof) Verification—Using this theorem finding the inverse of a matrix—Partition of matrices — Diagonalisation of matrices — Power of matrices.

UNITY 21 Hrs

Tensor Analysis: Definition of Tensors – Contravariant- Covariant and mixed tensors –Addition and subtraction of Tensors-Summation convention-Symmetry and Axisymmmetric Tensor - Contraction and direct product – Quotient Rule – MAPLE Application – **Tensor Calculus with differential Geometry.**

Text Books

_ ,	At Doors	I CAL DOORD							
S.	Author	Title of the book	Publishers						
No									
1	P.Kandasamy &	Allied Mathematics	S.Chand & company LTD – First						
	K.Thilagavathy	Volume II (For Unit	edition(2004)						
		I&II)							
2	T.K.Manicavachagam	Ancillary	S.Viswanathan (Printers and						
	Pillai and S. Narayanan	Mathematics(For Unit	Publishers) Pvt. Ltd.						
		III&IV)							
		Volume-I & Volume-II	Vol. I -2009 & Vol.II-2008						

	3	A.W.Joshi	Matrices and Tensors in	New Age International
			Physics(For unit V)	Publishers, Revised
				Edition,(2010)
4	4	http://www.maplesoft.com/applicate	tions/	

Reference Books

S.	Author	Title of the book	Publishers
No			
1	P.Durai Pandian and	Vector Analysis	SChand Publications(2014)
	Kayalal Pachaiyappa		
2	Shanthinarayan and	Vector Calculus	S Chand publications(2016)
	P.K.Mital		
3	P.C.Mathews	Vector Calculus	Springer Verlang London Ltd.(1998)
4	B.D.Gupta	Mathematical Physics	Vikas Publications(1993)

Unit III : Chapters 1 to3
Unit III : Chapter 7(Volume II)

Unit IV :Chapter3 (Volume I)6.2, 14.0to17

UnitV :Part II, Chapters 15, 16, 17

E-Content

1. Gradient, Divergence and curl –

i)https://www.youtube.com/watch?v=TYOYID9gJxM

- ii) https://www.youtube.com/watch?v=v3ZC4Mo1fS0
- 2. Stoke's Problem-
- i) https://www.youtube.com/watch?v=3NyLlzM ImE
- ii) https://www.youtube.com/watch?v=fWZCIUUrkuA
- 3. Inverse Laplace transforms of standard functions—
- i) https://www.youtube.com/watch?v=Y8GXpS31CGI
- 4. Diagonalisation of matrices-Power of matrices-
- i) https://www.youtube.com/watch?v=eEo7K8jPS9Y
- ii) https://www.youtube.com/watch?v=LTb9V84hG9w
- 5. Tensor Calculus with differential Geometry i) https://www.youtube.com/watch?v=noimyj5QTis

Pedagogy:

Chalk and Talk, Seminar, Group Discussion, Numerical Exercises and Demonstration

- 1. Dr.K.Sumathi, Associate Professor and Head, Department of Mathematics
- 2. Ms.A.Karpagam, Associate Professor, Department of Mathematics

COURSE CODE TH21A09	COURSE NAME ALLIED-MATHEMATICS FOR SCIENCES	Category	L	Т	P	Credit
	SEMESTER III	Theory	101	4	-	5

- > To inspire the students to use appropriate and relevant, fundamental and applied mathematical knowledge.
- > To explore how Chemistry and Mathematics interact with other disciplines with industryand with wider society.

Prerequisite

Knowledge in Calculus and Set theory.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO	CLO Statement	Knowledge
Number		Level
CLO1	Recall the important quantities associated with vector fields such as divergence, curl and scalar potential and concepts in matrices, set	K1
	theory and equivalence relations	
	Understanding the various concepts of line integrals and Laplace transformof one variable through problems.	K2
	Applying fundamental theorem of line integrals, Green's theorem, Stoke's theorem and Divergence theorem to evaluate integrals	К3
	Demonstrate knowledge of basic concepts such as Abelian groups, normal subgroups, quotient groups, cyclic groups, permutation	K4
	groups and group actions	

Mapping with Programme Learning Outcomes

CLOs/PLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	S	M	S	S
CLO2	S	M	S	S	S	S
CLO3	S	S	S	M	S	S
CLO4	S	S	M	S	S	S

S - Strong; M - Medium; L-Low

SEMESTER III

ALLIED-MATHEMATICS FOR SCIENCES I

Credits: 5

Hours:10

1

Subject Code: TH21A09

UNIT I 20Hrs

Vector Calculus: **Scalar and Vector point functions** - Differentiation of vectors - Differential Operators - Directional derivative: Gradient - Divergence and curl - MAPLE Applications-Stepwise Solutions of Vector Calculus.

UNIT II 20Hrs

Integration for vectors **Line**, **surface and volume integrals**-Theorems of Gauss, Green's and Stoke's(statements only) – *Verification of MAPLE Applications* – Stoke's problem.

UNITIII 20Hrs

Laplace Transforms: Definition–Laplace Transform of e^{at} , cosat, sinat, coshat, sinhat, t^n , n a positive integer -L[f''(t)], L[f''(t)],...., $L[f^n(t)]$ — Laplace transform of e^{at} cosbt, e^{at} sinbt and $e^{at}t^n$. **Inverse Laplace transforms of standard functions**. Solving differential equations of second order with constant coefficients using Laplace transform.

UNITIV 20Hrs

Matrices: **Eigen values and eigen vectors**- Cayley Hamilton theorem (without proof) Verification—Finding the inverse of a matrix (Using Cayley Hamilton theorem).

UNITV 21 Hrs

Review of Set theory and equivalence relations – Group – Properties - Order of an element – Subgroups - Cyclic groups – Theorems – Permutation group - Symmetric groupS_n.

TextBooks

S.	Author	Title of the book	Publishers
No			
1	P.Kandasamy &	Allied Mathematics	S.Chand & company LTD–First
	K.Thilagavathy	Volume II (For Unit	edition(2004)
		I&II)	
2	T.K.Manicavachagam	Ancillary	S.Viswanathan (Printers and
	Pillai and S. Narayanan	Mathematics (For	Publishers) Pvt. Ltd.
		Unit III&	
		IV)Volume I &	Volume I–2009 & Volume II–2008
		Volume II	
3	P. Kandasamy &	Mathematics Volume	S Chand & Company LTD-First
	K. Thilagavathy	II(For Unit V)	edition(2004)
4	http://www.maplesoft.com/app	olications/	

Reference Books

S.	Author	Title of the book	Publishers
No			
1	P.Durai Pandian and	Vector Analysis	S Chand Publications(2014)
	Kayalal Pachaiyappa		
2	Shanthinarayan and	Vector Calculus	S Chand publications(2016)
	P.K.Mital		
3	P.C.Mathews	Vector Calculus	Springer Verlang London Ltd.(1998)
4	G.Balaji	Transforms and	G. Balaji publishers, Revised edition(2011)
		Partial differential	
		equations	

Unit I & II : Chapters 1 to 3
Unit III : Chapter 7 Volume II
Unit IV : Chapter 3 Volume I

Unit V : Group Theory14 (Volume II)

E- Content

1) Scalar and Vector pointfunctions: https://www.youtube.com/watch?v=uanWfSQ6cq8&ab

2) Line, surface and volumeintegrals: https://www.youtube.com/watch?v=NyG0vRn5FfU&ab

- 3) Inverse Laplace Transforms of standard functions: https://www.youtube.com/watch?v=Y8GXpS31CGI&ab
- 4) Eigen values and eigen vectors: https://www.youtube.com/watch?v=PFDu9oVAE-g&ab
- 5) Review of Set theory and equivalence relations: https://www.youtube.com/watch?v=IZzEiuY-c2M&ab

Note

Question paper setters to confine to the above text books only.

Pedagogy

Chalk and Talk, Seminar, Group Discussion, Demonstration and Numerical Exercises.

- 1. Dr.K.Sumathi, Associate Professor and Head, Department of Mathematics
- 2. Dr.R.Lakshmi, Assistant Professor, Department of Mathematics

COURSE	COURS ENAME-ALLIED	CATEGORY	L	T	P	CREDIT
CODE	MATHEMATICS FOR					
0022	COMMERCE	Theory	86	4	-	5
TH21A07	SEMESTER I/III					

- To present the basic concepts of Mathematics to the students.
- To enable the students to find the practical applications to the real-world problems.

Course Learning Outcomes

Upon the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Recall about several diverse examples of mathematics not in secondary school mathematics, problems using mathematics in unfamiliar settings, and explain why mathematical thinking is valuable in daily life based on the series and Mathematics of Finance.	K1
CLO2	Understand Engage in analysing, solving, and computing real-world applications on the limits of Algebraic functions and simple differentiation	K2
CLO3	Apply the abilities to describe the concepts of simple integration and its application in business. Solve problems in a range of mathematical applications using the integral.	К3
CLO4	Analyse Linear Programming models for service and manufacturing systems, and apply operations research techniques and algorithms to solve these LP problems and transportation problems	K4

Mapping with Programme Learning Outcomes

CLOs/PLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	S	M	S	M
CLO2	M	S	M	S	S
CLO3	M	S	S	M	S
CLO4	S	M	M	S	S
CLO5	M	S	M	S	M

S-Strong; M-Medium; L-Low

SEMESTERI / III

ALLIED-MATHEMATICSFORCOMMERCE

(COMMON TO SEMESTER I -B.COM (CA,E-COM,FS,A&F)& SEMESTERIII B.COM(Aided & SF))

Credits: 5 Hours: 86

Subject Code: TH21A07

Unit I 17 Hrs

Arithmetic Progression - Geometric Progression. Simple Interest- Compound Interest - Annuities.

Unit II 17 Hrs

Differentiation: Introduction – Limits – Limits of a function – properties of limits – Standard limit theorems – Continuity – Properties of Continuous functions – Differentiation - Derivatives of x^n - Derivatives of e^x – Derivatives of log e^x – product rule – quotient rule – Function of a function rule – Logarithmic Differentiation – Differentiation of Implicit function – Relation between dy/dx and dx/dy – Parametric Differentiation – Successive Differentiation – Applications of Derivatives – Marginal cost – Marginal revenue – Elasticity Relation between marginal revenue and elasticity of demand -. Maxima and minima – Point of inflexion (Excluding Trigonometric functions).

Unit III 17Hrs

Integration: Arbitrary constant – Two general rules – Some standard results – Integration by Substitution – I – Integration by substitution – II – Integration by substitution – III – Standard results – Integration of rational function of the type – Integration by Partial fractions – Integration of the function of the type $1/((ax+b)\operatorname{sqrt}(lx^2+mx+n))$ – Integration by parts – Definite integral – properties of definite integrals – An Application of integration – Marginal cost – Total cost and average cost – Marginal revenue, Total revenue and Average revenue (Excluding Trigonometric functions).

Unit IV 17 Hrs

Linear Programming: Meaning and Formulation of LPP - Graphical Method - Simplex Method Transportation problem: Mathematical formulation of the problem - **Initial Basic feasible solution** (Matrix Minima Method - North — West Corner rule and VAM)- Simple problems only.

Unit V 18 Hrs

Assignment Problem: Introduction- **Mathematical formulation of assignment problem**- Assignment algorithm- unbalanced Assignment model- maximization case in assignment problems-Travelling Salesman Problem-Simple problems only.

Text books

S.No	Author	Title of the book	Publishers	Year of Publication	
1.	P.R.Vittal	Business Mathematics and Statistics	Margham Publications	2002	

	UNIT I: Chapter - 6,7,8,9 &10 UNIT- II: Chapter-15(Excluding Trigonometric functions) UNIT -III: Chapter -16 (Excluding Trigonometric functions)						
2.	V. Sunderesan, K.S. GanapathySubramania and K.Ganesan	Operations Research	A.R. Publications, 3 rd edition	2005			
	UNIT IV: Chapter 2 Section: 2.1 -2.8, Chapter - 3 : Section: 3.1.1 -3.1.4 , Chapter 5 - Section :5.1 UNIT V: Chapter 6 section 6.1,6.2,6.3,6.4,6.5,6.6, 6.7, 6.9						

Reference books

S. No	Author	Title of the book	Publishers	Year of Publication
1.	P.A. Navnitham	Business Mathematics and Statistics	Jai Publishers, Trichy.	2003
2.	P. Rama Murthy	Operations research	New age international Publishers	2007
3.	Manmohan and Gupta P K	Operations Research	Sultan Chand & Sons	2011

MOOC Learning

https://nptel.ac.in/courses/111/107/111107128/

(4 Lectures by Prof.Kusum Deep, Department of Mathematics, Indian

Institution of Technology Roorkee)

Lecture 03 Graphical method

Lecture 05 Simplex method

Lecture 28 Transportation Problem

Lecture 29 Assignment Problem

Note

Question paper setters to confine to the above textbooks only

Pedagogy

Lecture by Chalk and talk, Power point presentation, E-content, Group discussion, Assignment, Quiz, Peer learning, Seminar

Course Designers

- 1. Dr. R. Sakthikala, Assistant Professor, Department of Mathematics
- 2. Ms. M. Mohanapriya, Assistant Professor, Department of Mathematics

E - Content

- 1. Simple Interest, Compound Interest https://www.youtube.com/watch?v=B3IdfBcXrLA
- 2. Derivatives of function of a function and Logarithmic Differentiation https://www.youtube.com/watch?v=Dp9sgIvaKPk&ab https://www.youtube.com/watch?v=uGy681i2oRM&ab
- 3. Integration by Partial fractions https://www.youtube.com/watch?v=6rXByMcuAyI&ab
- 4. Initial Basic feasible solution

https://www.youtube.com/watch?v=ItOuvM2KmD4

5. Mathematical formulation of assignment problem

https://www.youtube.com/watch?v=OX1ssZez_sY&ab

	COURSE NAME -	Category	L	T	P	Credit
COURSE NUMBER TH21C07	CORE VII TRIGONOMETRY, FOURIER SERIES, Z- TRANFORMS TENSORS AND MAPLE APPLICATIONS SEMESTER IV	Theory	41	4	-	4

- To use Trigonometry concepts to solve applied problems
- To introduce students to the fundamentals of vector calculus and tensor analysis

Prerequisite

Knowledge of Functions and angles, Vector Algebra

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO	CLO Statement	Knowledge
Number		Level
CLO1.	Find solutions of a Trigonometric equation	K1
CLO2.	Work with the Trigonometric form of complex numbers and Calculate	K2
	vector scalar and vector products	
CLO3.	To understand the applications of Z transforms	K3
CLO4.	To understand the importance of tensors	K4

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

SEMESTER IV - CORE PAPER VII TRIGONOMETRY, FOURIER SERIES, Z- TRANFORMS , TENSORS AND MAPLE APPLICATIONS

Credits: 4 Hours: 41 UNIT I 8 Hrs

Solutions of simple trigonometric functions - Expansion of $\cos n\theta$, $\sin n\theta$, $\cos^n \theta$, $\sin^n \theta$. Hyperbolic functions - Separation of real and imaginary parts of Sin (α +i β), Cos (α +i β), Tan (α +i β), Sin h (α +i β), Cos h (α +i β), Tan h (α +i β), Tan⁻¹ (α +i β) - MAPLE Application for branches and branch cuts of inverse trigonometric and hyperbolic functions.

UNIT II 8 Hrs

Logarithm of a complex number – Summation of trigonometric series – Simple problems.

UNIT III 8 Hrs

Fourier series – Definition, finding fourier coefficient for a given periodic function with period 2π , odd and **even functions**– half range series Change of interval.

UNIT IV 8 Hrs

Z- Transforms: Linear Property – First Shifting Theorem – **Differentiation in Z- Domain** –

Dumping Rule- Second Shifting theorem-Z- Transform of Unit impulse Function- initial value theorem- final value theorem- Inverse Z – Transform – Partial Fraction Method- Methods of Residues – Power Series Method.

UNIT V 9 Hrs

Tensor Analysis - Definition of Tensors - Contravariant - Covariant and mixed tensors - **Addition and subtraction of Tensors** - Summation convention - Symmetry and Axisymmmetry Tensor - Contraction and direct product - Quotient law - *MAPLE Application* - Tensor Calculus with differential Geometry.

Text	Ro	nke
ILAL	\mathbf{p}	$\sigma \sigma_{2}$

טטע זי	N)		
1	T.K.ManicavachagomPillay and S. Narayanan	Trigonometry (For Unit I,II)	S. Viswanathan (Printers and Publishers) Pvt. Ltd. (2010)
2	T.K.ManicavachagomPillay and S. Narayanan	Fourier Series- (For Unit III)	S.Viswanathan (Printers and Publishers) Pvt. Ltd. (2010)
3	Dr.A.Singaravelu	Transforms and Partial Differential Equations (For Unit IV)	Meenakshi Agency Chennai, (2014)
4	A.W.Joshi	Matrices and Tensors in Physics (Unit V)	New Age International Publishers, Revised Edition,(2010)
5	http://www.maplesoft.com/applica	ations/	

Reference Books

1	Nathaniel Coburn	Vector and Tensor Analysis	The Macmillan Company, New York,
2	Shaheer Khan	Tensor Analysis and Its Applications	Partridge India, 2015
3	http://www.intmath.com/	**	

UNIT I : Chapter 3-Sections 1, 4, 5, 6, 9, 10. **UNIT II** : Chapter 4-Sections 1, 2, 3, 5, 6, 7, 9.

Chapter 5 – Sections 1, 2, 3.

UNIT III :Chapter 6- Sections – 1 to 6

UNIT IV : Chapter 5 – Sections 5.1-5.84 **UNIT V** : Part II – Chapter - 15, 16,17

MOOC learning

https://nptel.ac.in/courses/111/105/111105134/

- Fourier Series –Evaluation
- Convergence of Fourier Series –I
- Convergence of Fourier Series –II
- Fourier Series for Even and Odd Functions
- Half Range Fourier Expansions

- Differentiation and Integration of Fourier Series https://nptel.ac.in/courses/111/102/111102129/
- Introduction to Z-transform Part 1
- Introduction to Z-transform Part 2
- Introduction to Z-transform Part 3

E- Content

Separation of real and imaginary parts of Cos $(\alpha+i\beta)$, Tan $(\alpha+i\beta)$

 $\underline{https://youtu.be/VZtb4DFxBgA}$

https://youtu.be/UxClYnal2KA

Logarithm of a complex number

https://youtu.be/ve7CmEIEv_U

Finding fourier coefficient for a given periodic function with period 2π , evenfuctions

https://youtu.be/eDoWQEU213A

Differentiation in Z-Domain

https://youtu.be/4q5b5ZzgQcc

Addition and subtraction of Tensors

https://youtu.be/ZaSfJs2fgUQ

Pedagogy

Chalk and Talk, Seminar, Group Discussion and Numerical Exercises.

- 1. Ms. A. Karpagam, Associate Professor, Department of Mathematics
- 2. Dr.C.R.Parvathy, Associate Professor and Head, Department of Mathematics

COURSE	COURSE NAME - CORE VIII	Category	L	Т	P	Credit
NUMBER TH21C08	DYNAMICS WITH GNU - FISICA LAB SEMESTER IV	Theory	56	4	1	5

- > To develop an understanding of the principles of dynamics and the ability to analyze problems in a systematic and logical manner, including the ability to draw free-body diagrams
- ➤ To teach the students basic mathematical and computational tools for modeling and analysis of dynamic systems.

Prerequisite

Knowledge in forces and Vector Algebra.

Course Learning Outcomes

CLO	CLO Statement	Knowledge Level
Number		Timo wiedge Ze vei
CLO1.	Know basic kinematic concepts and dynamic concepts	K1
CLO2.	Understand and work with practical problems in dynamics	K2
CLO3.	Study the kinematics and kinetics of particles and rigid bodies	K3
	using force and acceleration, work and energy, and impulse	
	and momentum principles	
CLO4.	Solving dynamics problems and determine which concepts to	K4
	apply, and choose an appropriate solution strategy.	

On the successful completion of the course, students will be able to

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

SEMESTER IV – CORE PAPER VIII DYNAMICS WITH GNU-FISICA LAB

Credits: 5 Hours: 56 UNIT I 11 Hrs

Kinematics: Composition of velocities – Parallelogram law – Components of a velocity along two given directions – Resultant of several simultaneous coplanar velocities of a particle – **Relative velocity** – **Angular velocity** – Angular velocity of a particle moving along a circle with uniform speed – Acceleration – Composition of accelerations – Relative acceleration – Motion in a straight line under uniform acceleration – Space described in any particular second – Motion in a straight line with variable acceleration – The equations of motion of a particle under constant acceleration: graphical method – Acceleration of falling bodies – Motion of a particle down a smooth inclined plane. Laws of motion: Introduction – **Newton's laws of motion – Composition of forces** – Gravitational units of forces. Work function of a varying force – Tension in an elastic string – Power – Energy – Kinetic energy – Potential energy – Principle of conservation of energy. (simple problems only) - *Simple Problems using GNU - fisicaLab*.

UNIT II 11 Hrs

Projectiles:Introduction – Two fundamental principles – The path of a projectile is a parabola – **Characteristics of a motion of a projectile** – Moment of inertia: Theorem of parallel axes – Theorem of perpendicular axes – Moments of interia in some particular cases. M.I of a thin uniform rod, rectangular laminar - Uniform rectangular parallelopiped of edges 2a, 2b, 2c - *Simple Problems using GNU - fisicaLab*.

UNIT III 11 Hrs

Motion under the action of Central forces: Introduction – **Velocity and acceleration in polar coordinates** – Equations of motion in polar coordinates – Note on the equiangular spiral – Motion under a central force – Differential Equations of central orbit – Pedal equation – Velocities in a central orbit – Apses and apsidal distances – Law of inverse square, inverse cube (simple problems only) – *Simple Problems using GNU-fisicaLab*.

UNIT IV 11 Hrs

Simple Harmonic motion: Introduction - S.H.M in a straight line - General solution - Geometrical representation of a S.H.M - Change of origin - Composition of two S.H.M of the same period and in the same straight line - Composition of two S.H.M of the same period in two perpendicular directions - Units and Dimensions - Simple Problems using GNU-fisicaLab.

UNIT V 12 Hrs

Impulsive forces: Impulse – Impulsive force – Impact of two bodies – Loss of kinetic energy in impact – Motion of a shot and gun – Impact of water on a surface. Collision of Elastic Bodies: Introduction – Fundamental laws of impact – Impact of a smooth sphere on a fixed smooth plane – Direct impact of two smooth spheres – Loss of kinetic energy due to direct impact of two smooth spheres – Coss of kinetic energy due to oblique impact of two smooth spheres (simple problems only) – Simple Problems using GNU - fisicaLab.

Text Books							
	1	Dr.M.K.Venkataraman	A Text Book of	Agasthiar Publications-			
			Dynamics	(2014)			
	2	https://www.gnu.org/software/fisicalab/manual/en/fisicalab.pdf					

Refe	Reference Books						
	1.	K.ViswanathaNaik&M.S.Kasi	Dynamics	Emerald Publishers, 1992			
	2.	N.P. Bali	Dynamics	(Golden Mathematics series), Laxmi			
			-	Publications, New edition 2011			
	3.	M L Khanna	Dynamics	Jai PrakashNath company, 15 th edition,1998			
			-	- •			

UNIT I: Chapter 3: Sections 3.1 to 3.12 & 3.17 to 3.29, 3.32

Chapter 4:Sections 4.1 to 4.9 & 4.24 to 4.35

UNIT II: Chapter 6: Sections 6.1 to 6.11

Chapter 12: Sections 12.1 to 12.4

UNIT III : Chapter 11: Sections 11.1 to 11.15 UNIT IV : Chapter 10: Sections 10.1 to 10.7

Chapter 14: Sections 14.1 to 14.5

UNIT V: Chapter 7: Sections 7.1 to 7.6

Chapter 8: Sections 8.1 to 8.8

MOOC learning

- https://nptel.ac.in/courses/112/106/112106180/
- https://ocw.mit.edu/courses/mechanical-engineering/2-003sc-engineering-dynamics-fall-2011/
- http://cecs.wright.edu/~sthomas/dynamicslectureslides.html

E Content

Relative velocity

https://youtu.be/08au89dJxfw

Angular velocity

https://youtu.be/JXEkU0aOMOY

Newton's laws of motion

https://youtu.be/tjlKrVuFES8

Composition of forces

https://youtu.be/i12Y7HS4k

Characteristics of a motion of a projectile

https://youtu.be/r2xbfyeJHBw

Velocity and acceleration in polar coordinates

https://youtu.be/MlNmlY_yoZ0

Geometrical representation of a S.H.M

https://youtu.be/hN0riCE-w_s

Oblique impact of two smooth spheres

https://youtu.be/XCCNWUhbbzE

Pedagogy

Chalk and Talk, Seminar, Group Discussion, Numerical Exercises, Quiz and Case Study.

- 1. Dr. K.Sumathi, Associate Professor, Department of Mathematics
- 2 .Dr. G. Arthi, Assistant Professor, Department of Mathematics

		CATEGOR	L	T	P	CREDI
COURSE	COURSE NAME	Y				T
NUMBER	Python Programming					
TH21SB02	Semester IV	Theory	41	4	-	3

To extract valuable information for use in strategic decision making

Course Learning Outcomes

Upon the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Identify the basics of Python	K1
CLO2	Explainwhy Python is a useful scripting language for developers.	K2
CLO3	Apply various concepts to write programs in Python.	К3
CLO4	Analyze data and generate reports based on the data.	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

Semester IV

Python Programming

Credits: 3 Hours: 41

Subject code: TH21 SB 02

OBJECTIVE

To enhance career opportunities for the students by promoting skills in Python programming relevant to data analytics, machine learning, data visualization and natural language

processing.

UNIT I 9 Hours (6 L+3 P)

The way of the program: the python programming language- what is a program? - What is debugging? - formal and natural languages-the first program. **Variables, expressions and statements**: values and types- variables – variables names and keywords- statements-evaluating expressions-operators and operands-order of operations-operations on strings-composition – comments.

- Program to Print Hello world!
- Program to Add Two Numbers
- Program to Find the Square Root

UNIT II 7 Hours (5 L + 2P)

Functions: Function calls-Type conversion-Type coercion-Math functions- composition-adding new functions-definitions and use-flow of execution-parameters and arguments-variables and parameters are local-stack diagrams-functions with results. Conditional and recursion: the modulus operator-boolean expressions-logical operators-conditional execution-alternative execution-chained conditionals-nested conditionals-the return statement- recursion-stack diagrams for recursive functions-infinite recursion-keyboard input.

- Program to Calculate the Area of a Triangle
- Program to Solve Quadratic Equation
- Program to Swap Two Variables

UNIT III 7 Hours (5 L + 2P)

Fruitful functions: return values-program development-composition-boolean functions-more recursion-leap of faith-one more example-checking types. Iteration: multiple assignment-the while statement-tables-two-dimensional tables-encapsulation and generalization-more encapsulation-local variables-more generalization-functions. Strings: a compound data type-length-traversal-and the for loop-string slices-string comparison-strings are immutable- a find function looping and counting- the string module-character classification.

- ❖ Program to Generate a Random Number
- Program to Convert Kilometres to Miles

UNIT IV 9 Hours (6 L + 3P)

Lists: list values-accessing elements —list length-list membership-lists and for loops-list operationslist slices-lists are mutable-list deletion-objects and values-aliasing-cloning lists-list parametersnested lists-matrices-strings and lists. Tuples: mutability and tuples-tuple assignment-tuples as return values-random numbers-list of random numbers- counting many buckets-a single — pass solution. Dictionaries: dictionary operations-dictionary methods-aliasing and copying-sparse matrices-hints-long integers-counting letters.

- Program to Convert Celsius To Fahrenheit
- ❖ Program to Check if a Number is Positive, Negative or 0
- Program to Check if a Number is Odd or Even
- Program to Check Leap Year

UNIT V 9 **Hours** (6 L +3P)

File and exceptions: text files-writing variables-directories-pickling-exceptions. Classes and objects: user- defined compound types- attributes- instances as arguments-sameness-rectangles-instances as return values-objects are mutable-copying. Classes and functions: time- pure functions- modifiers- which is better? - **Prototype development versus planning**-generalization- algorithms.

- ❖ Program to Find the Largest Among Three Numbers
- Program to Check Prime Number
- Program to Find the Factorial of a Number

Text Book

S.No	Author	Title of the book	Publishers
1	Allen	How to think like a computer scientist	Dream tech
	Downey	Learning with Python	press,
	Jeffrey	https://greenteapress.com/thinkpython/thinkCSpy/thi	Green tea
	Elkner	nkCSpy.pdf	press 2016
	Chris		
	Meyers		
		Unit I	
		Chapter 1- 1.1-1.5 (Pg no.1-8)	
		Chapter 2 – 2.1-2.10 (Pg no.11-19)	
		Unit II	
		Chapter 3-3.1-3.12(Pg no.23-33)	
		Chapter 4-4.1-4.12 (Pg no.37-46)	
		Unit III	
		Chapter 5-5.1-5.8(Pg no. 49-58)	
		Chapter 6-6.1-6.9 (Pg no.61-72)	

		Chapter 7-7.1-7.7 (Pg no. 73-80)
		Unit IV
		Chapter 8-8.1-8.16(Pg no.83-96)
		Chapter 9-9.1-9.8 (Pg no. 97-104)
		Chapter 10-10.1-10.7(Pg no.107-113)
		Unit V
		Chapter 11-11.1-11.5(Pg no.117-124)
		Chapter 12-12.1-12.8(Pg no.129-135)
		Chapter 13-13.1-13.7(Pg no.139-144)
2.	Programs	https://www.programiz.com/python-
		programming/examples

Reference Books

Book Name	Author	Publisher	Year & Edition
Learning to Program	Richard L.Haltman	Richard Publishing	-
with Python			
Getting started with	Phuong Vo.	Packt Publishing	2015
Python Data Analysis	T.H.,Martin Czygan		

Digital learning

1) Variables, expressions and statements

https://www.youtube.com/watch?v=tvwo09N9QTQ

2) Math functions

https://www.youtube.com/watch?v=OviXsGf4qmY

3) Boolean functions

 $\underline{https://www.youtube.com/watch?v=r526yum0EYQ}$

4) Dictionary methods

https://www.youtube.com/watch?v=daefaLgNkw0&t=6s

5) Prototype development versus planning

https://www.youtube.com/watch?v=6qaN6i_7LZI&t=1s

- 1. Dr. K.Sumathi, Associate Professor, Department of Mathematics
- 2.Dr. G. Arthi, Assistant Professor, Department of Mathematics

COURSE	COURSE NAME	Category	L	T	P	Credit
NUMBER TH21A31	ALLIED MATHEMATICS FOR PHYSICS II	Theory	101	4	_	5

- > To develop general skills in differentiation, integration and algebraic manipulation
- > To introduce variety of differential equations and their solutions with emphasis on applied problems in Engineering and Physics
- > To describe basic ideas of Fourier series

Prerequisite

Knowledge of Differential Calculus, Integral Calculus and Vector Calculus.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO	CLO Statement	Knowledge
Number		Level
CLO1.	Use multiple integration to find areas and volumes of simple geometrical	K1
	objects	
CLO2.	Develop the ability to apply differential equations to significant applied or	K1
	theoretical problems.	
CLO3.	Solve problems in ordinary differential equations, dynamical systems	K2
CLO4.	Demonstrate their understanding of how physical phenomena are modeled	K2
	by differential equations and dynamical systems	
CLO5.	Compute the Fourier series representation of a periodic function, in both	К3
	exponential and sine-cosine forms	

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1.	S	S	S	S	S
CLO2.	S	S	S	S	S
CLO3.	S	S	S	S	S
CLO4.	S	S	S	S	S
CLO5.	S	S	S	S	S

S - Strong; M - Medium; L - Low

Syllabus

SEMESTER IV – ALLIED MATHEMATICS FOR PHYSICS - II

Credits: 5 Hours: 101 UNIT I 20 Hrs

Integration – Multiple integrals – Evaluation of double integrals – Changing the order of integration – Double integrals in polar Coordinates – Cylindrical co-ordinates (problems related cylindrical coordinates) - Application of double integrals in evaluating area between curves.

UNIT II 20 Hrs

Integration: Evaluation of triple integrals – Jacobian of two and three variables- Beta and Gamma functions – Relation-Evaluation of double and triple integrals using Beta and Gamma Functions – Bessel's function (Simple problems)

UNIT III 20 Hrs

Differential equation of the form $(aD^2 + bD + C)y = e^{ax}\phi(x)$ where a,b,c are constants, $\phi(x) = \sin mx$ or $\cos mx$ or x^m - Solution of homogeneous linear differential equations of the form (ax^2D^2)

+ bxD + c)y = X where X is a function of x – Equation reducible to homogeneous equation.

UNIT IV 20 Hrs

Formation of partial differential equations by eliminating arbitrary constants and arbitrary functions – Solutions of standard types of first order equations. f(p,q) = 0, f(x,p,q)=0, f(y,p,q)=0, f(z,p,q)=0, $f_1(x,p) = f_2(y,q)$, z = px+qy+f(p,q) – Equations reducible to the standard forms – Lagrange method of solving linear partial differential equation Pp+Qq = R – Charpit's method (simple problems only).

UNIT V 21 Hrs

Fourier series:Definition – Finding Fourier Coefficients for a given periodic function with period 2π - Odd and Even functions –Half range series – Change of Intervals – Applications.

Text Book

1	S. Narayanan and	Calculus Volume II &III	S. Viswanathan (Printers and
	T.K.M Pillay		Publishers) Pvt. Ltd. – Reprint Volume
	·		III (2014), Volume II (2015)
-	. D 1		

Reference Books

1	Dr. M.D. Raisinghania	Ordinary and Partial	S Chand and Company Ltd., Revised
		differential Equations	Edition (2013)
2	Richard C. Diprima	Elementary Differential	Wiley India private Ltd., 9 th Edition
	William E.Boyce	equations and Boundary	(2013)
		value problems	
3	A.K.Sharma	Multiple Integrals	Discovery Publishing House, First
			Edition (2005)

UNIT I &II: Chapter 5 Sections –2.1 to 4.0, 5.1 to 5.4 & 6.0 to 6.3

Chapter 6 Sections-1.1 to 2.4

Chapter 7 Sections-2.1 to 2.3,3,4,5,6

UNIT III : Chapter 2 Sections – 1.0 to 4, 8.0 to 8.3

UNIT IV : Chapter 4 Sections 1.0 to 7.0 UNIT V : Chapter 6 Sections 1.0 to 6.0

Pedagogy

Chalk and Talk, Seminar, Group Discussion, Numerical Exercises and Demonstration.

- 1. Dr.K.Sumathi, Associate Professor, Department of Mathematics
- 2. Dr.D.Sasikala, Assistant Professor, Department of Mathematics

COURSE	COURSE NAME	Category	L	T	P	Credit
NUMBER TH21A14	ALLIED - MATHEMATICS FOR SCIENCES II	Theory	101	4	-	5

- ➤ To acquaint the students with the tools in Mathematics to problem solving in as many areas as possible.
- To acquire both a conceptual and operational understanding of differential and integral calculus in one and several variables

Prerequisite

➤ Knowledge in Differential and Integral Equations

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO	CLO Statement	Knowledge
Number		Level
CLO1.	Know basic concepts relating integration, differentiation and Fourier	K1
	series	
CLO2.	Understand several techniques of differentiation and integration of real valued functions	K2
CLO3.	Learn methods of formation and solving differential equations of	K2
	dimensions one and higher	
CLO4.	Impart the application of periodic functions through Fourier series	K3

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	S	S	S	S	S
CLO2	S	S	S	S	S	S
CLO3	S	S	S	S	S	S
CLO4	S	S	S	S	S	S

S - Strong; M - Medium; L- Low

Syllabus

SEMESTER IV – ALLIED MATHEMATICS FOR SCIENCES II

Credits: 5 Hours: 101
UNIT I 20 Hr.

Integration – Integration by parts – Multiple integrals – Evaluation of the double integral – Changing the order of integration –Double integral in polar co-ordinates.

UNIT II 20 Hrs

Integration: Application of double integrals in evaluating area between curves – Evaluation of triple integrals – Jacobian of two and three variables – Beta and Gamma functions – Relation – Evaluation of double and triple integrals using Beta and Gamma Functions.

UNIT III 20 Hrs

Differential equation of the form $(aD^2 + bD + C)y = e^{ax}\phi(x)$, where a,b,c are constants, $\phi(x) = \sin mx$ or $\cos mx$ or x^m -Solution of homogeneous linear differential equations of the form $(ax^2D^2 + bxD + c)$ y = X, where X is a function of x-Equations reducible to the linear homogeneous equation.

UNIT IV 20 Hrs

Formation of partial differential equations by eliminating arbitrary constants and arbitrary functions – Solutions of standard types of first order equations: f(p,q) = 0, f(x,p,q)=0,

f(y,p,q)=0, f(z,p,q)=0, $f_1(x,p)=f_2(y,q)$, z=px+qy+f(p,q) – Lagrange method of solving linear partial differential equation $P_p+Q_q=R$ – Charpit's Method – Simple problems.

UNIT V 21 Hrs

Fourier series: Definition – Finding Fourier coefficients for a given periodic function with period 2π . Odd and Even functions – Half range series – Change of intervals.

Text Book

1.	S. Narayanan and	Calculus Vol II &	S.Viswanathan (Printers and
	T.K.ManicavachagomPillay	III	Publishers) Pvt.Ltd.Reprint
			(2000).

Reference Books

1	Dr. M. D. Raisinghania	Ordinary and Partial	S Chand and Company Ltd.,
		differential Equations	Revised Edition (2013)
2	Richard C. Diprima	Elementary Differential	Wiley India private Ltd., 9 th
	William E.Boyce	equations and Boundary	Edition (2013)
		value problems	
3	A. K. Sharma	Multiple Integrals	Discovery Publishing House,
			First Edition (2005)

UNIT I & II : Vol II Chapter 1– Section – 12.0.

Chapter 5 – Sections – 2.1 to 4.0, 5.1 to 5.4 & 6.1 to 6.3.

Chapter 6 –Sections – 1.1 to 2.4.

Chapter 7 -Sections -2.1 to 2.3,3,4,5,6.

UNIT III : Vol III Chapter 2 – Sections – 1.0 to 4, 8.0 to 8.3, 9.0.

UNIT IV : Chapter 4 – Sections – 1.0 to 7.0. UNIT V : Chapter 6 – Sections – 1.0 to 6.0.

NOTE:

Question paper setters to confine to the above text books only.

Pedagogy

Chalk and Talk, Seminar, Group Discussion, Numerical Exercises, Quiz and Case Study

- 1.Dr.B. TamilSelvi, Associate Professor and Head, Department of Mathematics
- 2.Dr.D.Sasikala, Assistant Professor, Department of Mathematics

COURSE	COURSE NAME	CATEGORY	L	T	P	CREDIT
COURSE CODE TH21A08	ALLIED STATISTICS FOR COMMERCE	ALLIED	86	4	-	5

- To present students the Basic concepts of statistics.
- To enable the students to find the practical applications to the real world problems.

Course Learning Outcomes

Upon the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Indicate the strength and direction of a <i>linear</i> relationship between two variables, <i>regression and time series</i> .	K1
CLO2	Construct simple price, quantity, and value indexes. Understand the concepts of a random variable and a probability distribution.	K2
CLO3	To measure progress toward quality improvement and public health <i>goals</i> .	K3
CLO4	Hypothesize various advanced statistical techniques for exploring practical situations.	K4

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	M	S	M	S
CLO2	M	S	M	S	M
CLO3	S	M	S	M	S
CLO4	M	S	M	S	S
CLO5	S	S	S	M	S

S- Strong; M-Medium; L-Low

Syllabus

SEMESTER IV Allied - Statistics for Commerce COMMON TO B.COM(Aided & SF)

Credits 5 Hours 86

Subject Code: TH21A08

UNIT I 16Hrs

Correlation analysis: Introduction - Significance of the study of correlation - correlation and causation - Types of correlation- Methods of studying correlation - Graphic method - Karl Pearson's coefficient of correlation - Coefficient of correlation and probable error -Regression analysis. Analysis of time Series: Introduction - Utility of time series - Components of time series - Preliminary adjustments before analysing time series - Measurement of trend - Free hand graphic method - Method of semi averages - Moving average method - Measurement of seasonal variations - Method of simple averages - ratio to moving average - link relative method.

UNIT II 19 Hrs

Index Numbers: Introduction - Uses of index numbers- Classification of index numbers - problems in construction of index numbers - Methods of constructing index numbers- Quantity or volume index numbers - Value index numbers - Tests of adequacy of index number formulae-Consumer price index numbers-meaning and need-method of constructing the index- Index number of industrial production.

UNIT III 17 Hrs

Concepts of probability- Addition theorem-Multiplicative theorem – Conditional probability-Bayes theorem-Mathematical Expectation-Theoretical distributions-Binomial Distribution -Poisson distribution -Normal distribution.

UNIT IV 17 Hrs

Statistical Inference-Tests of hypothesis-Introduction—Procedure-Types of errors-Two-tailed and one-tailed tests of hypothesis-standard error and sampling distribution-Tests of significance for large samples-Difference between small and large samples- Two tailed test and standard error of the difference between small and large samples-chi-square test and goodness of fit.

UNIT V 17 Hrs

Vital Statistics-Definition-Utility of vital statistics-Measures of populationand Vital statistics-Introduction-Measures of population - Measures of vital statistics - Mortality Rates - Fertility Rates.

Text Books

S. No	Author	Title of the book	Publisher	rs	Year of Publication			
1.	S P Gupta	Statistical	Sultan Chand &Sons		2004			
	_	Methods	publishers		publishers			
	Unit I: Volume	Unit I: Volume I: Chapter: 10,11,14.						
	Unit II: Volume I: Chapter: 13							
	Unit III: Volum	ne II: Chapter: 1&2						
	Unit IV: Volum	ne II: Chapter:3&4.						
2.	Veer	Biostatistics Third	MEDTECH	2015				
	BalaRastogi	Revised Edition						
	Unit V: Chapte	er20; Sections:20.2, 20	0.2.1.,20.2.2.					
	Chapte	r21:21.1, 21.2, 21.2.1	, 21.3,21.4,21.5					

Reference Books

S. No	Author	Title of the book	Publishers	Year of
5.110	Author	Title of the book	1 ublishers	Publication
1.	P.A. Navnitham	Business Mathematics and	Jai Publishers,	2003
		Statistics	Trichy.	
2.	V.K.Kapoor	Fundamentals of Applied Statistics	Itan Chand & Sons	2007
3.	P.N.Arora Sumeet Arora,	Comprehensive Statistical Methods	Itan Chand & Sons	2008
	S.Arora			

MOOC learning

https://www.youtube.com/watch?v=zlZaOnBbpUg

(1 lesson by Prof. Arunkanda, Department of Mechanical Engineering, IIT, Delhi)

Lecture 35 - Analysis of Time Series

https://www.youtube.com/watch?v=JT9o8b43Gk0

Index numbers

https://nptel.ac.in/courses/102106051/

26 Lessons by Prof.MukeshDoble, IIT Madras

Lecture 1 – Introduction

Lecture 2 – Binomial Distribution

Lecture 3 – Poisson Distribution

Lecture 4 – Normal Distribution

Lecture 5-10 – T- test

Lecture 22-24 – Chi-Square test

Note

Question paper setters to confine to the above text books only

Pedagogy

Chalk and talk, PPT, Group discussion, Seminar, Quiz, Assignment

- 1. Ms.M.Deepa, Assistant Professor, Department of Mathematics
- 2. Ms.S.Narmatha, Assistant Professor, Department of Mathematics

COURSE	COURSE NAME	Category	L	T	P	Credit
CODE TH21C09	COURSE NAME – CORE PAPER IX REAL ANALYSIS WITH TABLEAU SEMESTER V	Theory	103	2	-	5

- > To develop the basic material in a systematic and rigorous manner in the context of real-valued functions of a real variable.
- ➤ Apply mathematical concepts and principles to perform numerical and symbolic computations.
- ➤ Able to construct, analyze and critique mathematical proofs in analysis.

Prerequisite

Knowledge in basic properties of the real numbers that lead to the formal development of real analysis.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO	CLO	Knowledge
Number	Statement	Level
CLO1	Know the concept of convergence and limits as they apply to	K1
	sequences, series, differentiation and integration.	
CLO2	Analyze the precise proofs of results that arise in the context of real	K2
	analysis.	
CLO3	Identify, formulate and solve problems by the implementation of a	K2
	variety of proof techniques.	
CLO4	Apply critical thinking skills to solve problems that can be modelled	К3
	mathematically.	
CLO5	Analyze how abstract ideas and rigorous methods in real analysis can	К3
	be applied to practical problems	

Mapping with Programme Learning Outcomes

5 With 1 Togramme Zearining Outcomes										
CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7			
CLO1	S	S	S	S	S	S	S			
CLO2	S	S	S	S	S	S	S			
CLO3	S	S	S	S	S	S	S			
CLO4	S	S	S	S	S	S	S			
CLO5	S	S	S	S	S	S	S			

S-Strong; M-Medium; L-Low

SEMESTER V – CORE PAPER IX

REAL ANALYSIS WITH TABLEAU

Credits :5 Hours:103

Subject Code: TH21C09

UNITI 21hrs

Some Basic notions of set theory — Countable and uncountable sets — uncountability of the real number system — set algebra — countable collections of countable sets. Elements of point set topology — Euclidean space R^n — open balls and open sets in R^n — The structure of open sets in R^n — closed sets and adherent points — the Bolzano Weierstrass theorem.

UNITII 20hrs

The Cantor intersection theorem – covering – Lindelof covering theorem – the Heine Borel theorem – compactness in Rⁿ- Metric space – point set topology in metric space – compact subsets of a metric space – convergent sequences in a metric space – Cauchy sequences – complete metric space. Simple visualizations using Tableau

UNITIII 21hrs

Limit of a function – continuous functions – continuity of composite function – Examples of continuous functions – continuity and inverse images of open or closed sets – functions continuous on compact sets – topological mappings – Bolzano's theorem – connectedness – components of a metric space – arc wise connectedness- uniform continuity- fixed point theorem. Simple visualizations using Tableau

UNIT IV 20hrs

Definition of derivatives – derivative and continuity – algebra of derivatives – the chain rule – one sided derivatives – zero derivatives – Rolle's theorem – the mean value theorem for derivative – Taylor's formula with remainder – functions of bounded variations – properties of monotonic functions – total variations – additive property – continuous function of bounded variations – total variation on [a,x] as a function of x.

UNITY 21 hrs

The Riemann Stieltjes integral : Introduction - notation - The definition of Riemann Stieltjes integral - linear properties - integration by parts - change of variable in a Riemann stieltjes integral - Reduction of a Riemann integral - step functions as integrators - reduction of a Riemann Stieltjes integral to a finite sum - Euler's summation formula - upper and lower integrals - Riemann's condition - Comparison theorems - necessary and sufficient condition for existence of Riemann Stieltjes integral.

Text Book

1.	T.M.Apostol	Mathematical analysis second edition	Narosa Publishing House 2002
	https://public.tableau.com/en- us/s/download		

Book for reference

1	. R.R.Goldberg	Methods of Real Analysis	Oxford and IBH Publishing Co. Pvt. Ltd.(2017)
2	Walter Rudin	Principles of Mathematical Analysis	McGraw – Hill(1976)

UNITI : Chapter 2 - Sections - 2.1 to 2.15

Chapter 3 - Sections - 3.2 to 3.8

UNITII : Chapter 3 - Sections - 3.9 to 3.15

Chapter 4 – Sections – 4.2 to 4.4

UNITII : Chapter 4 – Sections – 4.5, 4.8 to 4.21 **UNITIV** : Chapter 5 – Sections – 5.1 to 5.12

Chapter 6 – Sections – 6.1 to 6.8

UNITV : Chapter 7 - Sections - 7.1 to 7.17

Note:

Question paper setters to confine to the above text books only.

Pedagogy:

Chalk and Talk, Seminar, Group Discussion, Numerical Exercises, Quiz and Case Study

- 1. Dr.B. TamilSelvi, Associate Professor and Head, Department of Mathematics.
- 2. Dr. D. Sasikala, Assistant Professor, Department of Mathematics.

COURSE	COURSE NAME CORE PAPER X	CATEGORY	L	Т	P	CREDIT
CODE	ABSTRACT ALGEBRA WITH	7 D1	102			_
TH21C10	MAPLE APPLICATIONS	Theory	103	2	-	5
	SEMESTER V					

- > To acquaint the students with basic concepts of fundamental algebraic structures
- > To construct and analyze mathematical proofs in algebra.

Prerequisite

Knowledge about Set Theory, Functions and Groups.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1.	Learn about Subgroups, Homomorphism, Automorphism, Rings, Ideals and Quotient rings and Euclidean rings.	K1
CLO2.	Identify, formulate and solve problems by using the implementation of a variety of proof techniques	K2
CLO3.	Demonstrate knowledge and understanding of the concept of cosets of a subgroup of a group and normal subgroups.	K2
CLO4.	Demonstrate knowledge and understanding of symmetric groups, cyclic groups, their Properties, direct product of groups and the concept of quotient groups.	K3
CLO5.	Analyze the application of Permutation groups, Sylow's theorem, Abelian groups.	K3

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1.	S	S	S	S	S	S	S
CLO2.	S	S	S	S	S	S	S
CLO3.	S	S	S	S	S	S	S
CLO4.	S	S	S	S	S	S	S
CLO5.	S	S	S	S	S	S	S
CLO6.	S	S	S	S	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

SEMESTER V – CORE PAPER X ABSTRACT ALGEBRA WITH MAPLE APPLICATIONS

Credits: 5 Hours:103

Subject Code: TH21C10

UNIT I 20 hrs

Subgroups - Congruence relation-cosets-Lagrange's Theorem -Order of an element - A counting Principle - Normal subgroups and quotient groups - Homomorphisms - Kernel of a homomorphism - Isomorphism- Cauchy's theorem for Abelian Group - Sylow's theorem for Abelian Group.

UNIT II 21 hrs

Automohisms –Inner Automorphisms- Cayley's theorem - Permutation groups-Another counting principle – Equivalence relation– Sylow's Theorem – Finite abelian group. **UNIT III** 21

hrs

Rings – Definition and examples – Basic properties – Special classes of rings – The Pigeonhole Principle – Integral domains and fields – Homomorphisms of rings.

UNIT IV 20 hrs

Ideals and Quotient rings - Maximal, principal and prime ideals - The field of quotients of an integral domain.

UNIT V 21 hrs

Euclidean rings – A particular Euclidean ring – Polynomial rings – Polynomials over the rational field – Gauss' Lemma – The Eisenstein Criterion - Polynomial rings over commutative rings.

Text Books

S.No	Author	Title of the book	Publishers
1	I.N. Herstein	Topics in Algebra	Wiley Eastern Ltd 2 nd edition (2002)
2	http://www.maplesoft.com/applications/		

Books for Reference

S.No	Author	Title of the book	Publishers
1	S.Arumugam & A. Thangapandi Isaac	Modern Algebra	New Gamma Publishing House, 1990
2	M.L. Khanna	Modern Algebra	Jai Prakash Nath and Co, 1990

UNIT I : Sections – 2.4 to 2.7 **UNIT II** : Sections – 2.8 to 2.12,2.14

UNIT III : Section 3

UNIT IV : Sections – 3.4 to 3.6 **UNIT V** : Sections – 3.7 to 3.11

Note:

Question paper setters to confine to the above text books only.

Pedagogy:

Chalk and Talk, Seminar, Group Discussion, Numerical Exercise

- 1. Dr. G. Arthi, Assistant Professor, Department of Mathematics.
- 2. Dr.K.Sumathi, Associate Professor, Department of Mathematics.

COLIDCE MANGE ELECTIVE I	1		1		
COURSE NAME ELECTIVE I	Category	L	T	P	Credit

COURSE CODE TH21E01	NUMBER THEORY AND NUMERICAL METHODS WITH C	Theory	103	2		4	
---------------------------	--	--------	-----	---	--	---	--

- > To understand and appreciate the beauty of Number Theory, which has contributed significantly to the development of Algebra and Analysis.
- > To provide the necessary basic concepts of numerical methods and give procedures for solving numerically different kinds of problems in scientific computing.

Prerequisite

- ➤ Knowledge in single variable calculus
- ➤ Knowledge in differential equations and linear algebra

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1.	Define and interpret the concepts of divisibility, congruence,	K1
	greatest common divisor, prime, and prime-factorization	
CLO2.	Formulate and prove conjectures about numeric patterns and	K2
	Produce rigorous arguments (proofs) centered on number	
	theory.	
CLO3.	Derive numerical methods for approximating the solution of problems and Analyze the error incumbent in any such numerical approximation,	К3
CLO4.	Compare the viability of different approaches to the numerical	K4
	solution of problems arising in roots of solution of non-linear	
	equations, interpolation and approximation, numerical	
	differentiation and integration, solution of linear systems.	

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1.	S	M	S	S	S	S	S
CLO2.	S	S	S	M	S	S	S
CLO3.	S	S	M	S	S	S	M
CLO4.	S	S	S	M	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

SEMESTER V –ELECTIVE I NUMBER THEORY AND NUMERICAL METHODS WITH C

Credits :4 Hours:103

Subject code: TH21E01

UNITI 21 hrs

Peano's axioms- Mathematical induction – Addition and multiplication* – order relation – principle of well ordering.

Integers: Addition and multiplication- positive and negative integers- $\mbox{Trichotomy}$ law- absolute value — $\mbox{Binomial}$ theorem- $\mbox{Divisibility:}$ Associates — $\mbox{Division}$ algorithm — $\mbox{g.c.d}$ (H.C.F) — $\mbox{Euclidean}$ algorithm — $\mbox{l.c.m}$

 $\frac{http://www.math.ucsd.edu/\sim benchow/Inequalities.pdfhttp://eaton.math.rpi.edu/coursematerials/fall08/mk}{1500/AppdxE.pdfhttp://ncert.nic.in/ncerts/l/keep208.pdf}$

UNIT II 21 hrs

Distribution of primes: General discussion – Fermat's conjecture – Fermat numbers – Gold Bach's conjecture – Mersenne numbers – Gap theorem – infinitude of primes. Congruences: Definition - residue classes – complete and least residue systems – reduced residue systems – casting out 9 magic numbers – Divisibility tests – linear congruences – solution of congruences – Chinese remainder theorem. Theorems of Fermat and Wilson: Little Fermat's Theorem – Euler's extension

https://www.slideshare.net/ANKU3686/euler-and-fermat-theorem-14977572

UNIT III 21 hrs

Solution of numerical, algebraic and transcendental equation: The bisection method – Method of false position – Newton Raphson method ,Geometrical interpretation of Newton's method ,Gauss elimination method – Gauss seidal iteration method – Gauss Jordan and Gauss Jacobi methods – Simple problems using C

http://www.bspublications.net/downloads/0523a9f25106ff_M_III_ch_1.pdf

UNIT IV 20 hrs

Finite differences – forward, backward and central differences – The operator E – Relation between E and the operator D and other difference operators- Interpolation: Gauss forward and backward interpolation formula, Numerical differentiation and integration: Derivatives using Newton's forward, backward and divided differences – Lagrange's interpolation formula – Inverse interpolation - Simple problems using C https://byjus.com/lagrange-interpolation-

 $\frac{formula/http://www.dailyfreecode.com/code/lagranges-interpolation-method-finding-2376.aspx$

UNIT V 20 hrs

Numerical solution of Ordinary Differential Equations: Introduction – Solution by Taylor's series (Type 1) - Taylor series method for simultaneous first order differential equations - Taylor series method for second order differential equations — Euler's method – Improved Euler method – Runge-Kutta method – Second order Runge-Kutta method (for first order O.D.E)

Numerical solution of Partial Differential Equations: Introduction – Difference Quotients – Graphical representation of Partial Quotients – Classification of Partial Differential Equations of the Second order – Elliptic Equations – Solution of Laplace's Equation (By Liebmann's iteration process)

 $\underline{https://sam.nitk.ac.in/sites/default/Numerical_Methods/ODE/numerical_solution_to_ODE.pdf}$

Text Books

S.N	Author	Title of the book	Publishers
0			
1	S.Kumaravelu &	Elements of Number Theory	Raja Sankar offset
	SusheelaKumaravelu		Printers, Sivakasi, 2002
	Unit I: Page No :1-59		
	Unit II : Page No :148 – 224		
2	P. Kandasamy,	Numerical Methods	S.Chand Co. Ltd., New
	K. Thilagavathy and K. Gunavathy,		Delhi, Reprint 2010
	UNIT III: Ch3: 3.1, 3.3	3, 3.4, Ch 4: 4.2, 4.7, 4.8,4.9	
	UNIT IV: Ch5: 5.1, 5.2	2, 5.4 (problems involving	
	operatorsalon	ne), Ch7: 6.1, 6.2, 6.3, Ch 8: 8.7,8.8	3, Ch
	9 :9.1,9.2,		
	UNIT V: Ch11:11.1,11	.5,11.6,11.9,11.10,11.12,11.13	
	Ch 12: 12.1, 12.2, 12.3, 12.4, 12.5,	12.6	
3	Numerical methods with	T.Veerarajan&T.Ramachandran	Tata McGraw-Hill
	Programs in C		Publishing Company
	(only for C programs)		Limited, New Delhi,
			2006, Second Edition

Books for Reference

Door	Double for Reference						
S.N	Author	Title of the book	Publishers				
0							
1.	Introduction to the	Ivan Niven and Herberts Zuckerman	Wiley Publishing House- Fifth				
	theory of numbers		edition Narosa 1991				
2.	Elementry Number	David M.Burton	McGraw-Hill Companies, New				
	Theory		York, 2007, Sixth edition				
3.	Numerical Methods	M.K.Venkataraman	National Publishing Company				
	in Science &		1990 edition				
	Engineering						
4.	Numerical Methods	M.K.Jain, S.R.K.Iyengar&R.K.Jain	New Age International				
	for Scientific and		Publishers, New Delhi, 2010				
	Engineering						
	Computations						

Note:

Question paper setters to confine to the above text books only.

Pedagogy:

Chalk and Talk, Seminar, Group discussion, Numerical Exercises, Quiz.

- 1. Dr.K.Sumathi, Associate Professor, Department of Mathematics.
- 2. Dr.R.Lakshmi, Assistant Professor, Department of Mathematics.

COURSE	COURSE NAME	Category	L	T	P	Credit	
--------	-------------	----------	---	---	---	--------	--

CODE TH21E02	ELECTIVE II- GRAPH THEORY WITH OPEN	Theory	103	2	4
	MODELICA				

To introduce Graph theory concepts to solve the applied problems

Prerequisite

Knowledge of Blocks, Trees, Matrices and Partitions

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO	CLO	Knowledge
Number	Statement	Level
CLO1.	Find solutions of Ramsey, Matroids, Graphical Partitions.	K1
CLO2.	Appreciate and use Konigsberg bridge problem, Menger's theorem,	K1
	Hamiltonian Graphs, Eulerian Graphs.	
CLO3.	Calculate degrees cutpoints, no. of cycles, centres, centroids,	K2
	connectivity, line connectivity.	
CLO4.	Recognize operations on graphs, characterization of trees, line	K2
	graphs, properties of line graphs.	
CLO5.	Understand various Graphs relating extremal graphs, intersection graph cutpoint graphs, centres and centroids, Independent cycles and cocycles, connectivity and line-connectivity, graphical variations of menger's theorem, line graphs and Traversability, adjacency matrix, incidence matrix, cycle matrix	К3
CLO6.	Demonstrate knowledge of basic concepts such as variety of graphs, Blocks, Trees, Connectivity and line ,matroids, Matrices and Partitions	К3

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1.	S	S	S	S	S	S	S
CLO2.	S	S	S	S	S	S	S
CLO3.	S	S	S	S	S	S	S
CLO4.	S	S	S	S	S	S	S
CLO5.	S	S	S	S	S	S	S
CLO6.	S	S	S	S	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

SEMESTER V - ELECTIVE II GRAPH THEORY WITH OPEN MODELICA

Credits 4 Hours:103

Subject Code: TH21E02

UNITI 21hrs

Graphs : varieties of graphs — walks and connectedness — degrees — the problem of Ramsey — extremal graphs — intersection graphs— Konigsberg bridge problem-problems using open Modelica

UNITII 20hrs

Operations on graphs - Blocks : cut points , bridges and blocks - block graphs and cutpoint graphs. problems using open Modelica

UNITIII 20hrs

Trees: Characterization of trees – centers and centroids – block - cutpoint trees – independent cycles and co-cycles – matroids-problems using open Modelica.

UNITIV 21hrs

Connectivity and line - connectivity - graphical variations of Menger's theorem - further variations of Menger's theorem .Matrices : the adjacency matrix - the incidence matrix - the cycle matrix problems -using open Modelica

UNITV 20hrs

Partitions – Traversability : Eulerian graphs – Hamiltonian graphs. Line graphs: Properties of line graphs – characterization of line graphs-problems using open Modelica

Text Book:

1 0210 1	CAL BOOK •						
S.No	Author	Title of the	Publishers				
		book					
1	Frank Harary	Graph theory	Narosa publishing house 10 th				
			reprint 2001				
	https://www.openmodelica.org/						

Reference:

S.No	Author	Title of the book	Publishers
1	NarsingDeo	Graph Theory with Applications to energy and computer science	Prentice Hall of India Publication reprint (2004)

Unit I: Chapters 1 and 2

Unit II: Chapter 3

Unit III: Chapter 4

Unit IV: Chapter 5 and 13 Unit V: Chapter 6,7 and 8

Note

Note

Question paper setters to confine to the above text books only

Pedagogy

Chalk and Talk, Seminar, Group Discussion and Numerical Exercises

Course Designers:

- 1. Dr.B. TamilSelvi, Associate Professor and Head, Department of Mathematics.
- 2. Ms.A. Karpagam, Associate Professor, Department of Mathematics.

SEMESTER V – Advanced Learners' Course

ASTRONOMY I

Credits : 5 Hours :60

Subject Code: TH16AC1

OBJECTIVE:

To study the solar system and expose the mathematical tools used to solve the mysteries of the universe.

UNIT I:

A brief history of solar system - General description of the solar system-comets and meteorites-spherical trigonometry.

UNIT II:

Celestial sphere-celestial coordinates – diurnal motion – variation in length of the day

UNIT III:

Dip – twilight – geocentric parallax.

UNIT IV:

Refraction – Tangent formula – Cassini's formula

UNIT V:

Kepler's laws – Relation between true eccentric and mean anamolies.

Text Book:

S.No	Author	Title of the book	Publishers
1	S. Kumaravelu and Suseela	Astronomy	Revised edition 2005.
	Kumaravelu		

Unit I	Chapter 11, 1	Headings $327 - 339$, $1.1 - 1.13$
Unit II	Chapter 2	Headings 39 - 86
Unit III	Chapter 3, 5	Headings 106 – 111, 135
Unit IV	Chapter 4	Headings 117 – 134
Unit V	Chapter 4	Headings 146 – 158

- 1. Dr. K. Sumathi, Associate Professor, Department of Mathematics.
- 2. Dr. G. Arthi, Assistant Professor, Department of Mathematics.

SEMESTER V -Advanced Learners' Course

FUZZY MATHEMATICS I

Credits :5 Hours :60

Subject Code: TH16AC2

OBJECTIVE

To introduce basic concepts of fuzzy mathematics and its applications.

UNIT I:

From Classical sets to Fuzzy sets: Introduction – Crisp sets – Fuzzy sets – Basic Types – Basic concepts – Characteristics and significance of the paradigm shift.

UNIT II:

Fuzzy Sets versus Crisp Sets Additional properties of α sets – Representation of Fuzzy sets – Extension principle for Fuzzy sets.

UNIT III:

 $Operations\ on\ Fuzzy\ sets-Types\ of\ operations-Fuzzy\ compliments-Fuzzy\ intersections:\ t-norms-Fuzzy\ Unions:\ t-conforms.$

UNIT IV:

Fuzzy Arithmetic Fuzzy Numbers – Linguistic variables-Arithmetic operations on intervals – Lattice of fuzzy numbers – Fuzzy equations.

UNIT V:

Fuzzy Relations Crisp versus Fuzzy relations-Projections and cylindric extensions – Binary Fuzzy relations-Fuzzy equivalence relations – Fuzzy compatibility relations – Fuzzymorphisms.

Text Book:

S.No	Author	Title of the book	Publishers
1	George J. Klir/Bo	Fuzzy sets and Fuzzy logic	Prentice Hall of India Fourth
	Yuan	Theory and applications	printing June 2001.

UNITI	:	Chapter 1	Sections 1.1 –1.5
UNITII	:	Chapter 2	Sections $2.1 - 2.3$
UNITIII	:	Chapter 3	Sections $3.1 - 3.4$
UNITIV	:	Chapter 4	Sections 4.1 –4.6

UNITY: Chapter 5 Sections 5.1 –5.3, 5.5, 5.6, 5.8

- 1. Dr.B.TamilSelvi, Associate Professor and Head, Department of Mathematics.
- 2. Dr. D. Sasikala, Assistant Professor, Department of Mathematics.

SEMESTER V – Advanced Learners' Course

TOPICS IN FLUID DYNAMICS I

Credits : 5 Hours :60

Subject Code: TH16AC3

OBJECTIVE

To introduce the basic concepts of fluid dynamics and expose the students to the practical applications of mathematics

UNIT I:

Basic concepts: Types of fluid - properties.

UNIT II:

Kinematics of flow field: Definitions – Velocity – Local, convective and material derivatives – equation of continuity in Cartesian co-ordinates – velocity potential, irrotational flow – rotational flow –vorticity

UNIT III:

Conservation of momentum – equation of motion of an inviscid fluid in Cartesian co- ordinates – Bernoullis' equation –Applications of Bernoullis' theorem

UNIT IV:

Irrotational motion: General motion of a fluid element – Vorticity – body forces and surface forces – flow and circulation – stokes' theorem – Kelvin circulation theorem

UNIT V:

Motion in two dimensions: Stream function – Physical interpretation of stream function – complex potential and complex velocity – Two dimensional source and sink – complex potential of a source – two dimensional doublet – complex potential of a doublet.

Text 1	Text Book:						
S.No	Author	Title of the book	Publishers				
1	Shanthi Swarup	Fluid dynamics	Krishna Prakashan media (p) ltd,				
			Meerut11th edition 2003,				

UNIT I : Chapter 1 Sections 1.0 –1.1
UNIT II : Chapter 2 Sections 2.4 – 2.9, 2.14 – 2.15
UNIT III : Chapter 3 Sections 3.11, 3.3, 3.10
UNIT IV : Chapter 4 Sections 4.0 –4.5
UNIT V : Chapter 5 Sections 5.1 –5.7

- 1. Dr.B.TamilSelvi, Associate Professor and Head, Department of Mathematics
- 2. Dr.R.Lakshmi, Assistant Professor, Department of Mathematics

COURSE	COMPLEX ANALYSIS WITH	CATEGORY	L	T	P	CREDIT
CODE	TABLEAU		88	2.	_	5
TH21C11	SEMESTER VI	Theory	00			

- > Introduce students to the Complex Number System
- Equip students with necessary knowledge and skills to enable them handle mathematical operations, analyses and problems involving complex numbers.

Course Learning Outcomes

Upon the successful completion of the course students will be able to

CLO	CLO Statement	Knowledge
Number		Level
CLO1	Understand the fundamental concepts of complex analysis.	K1
CLO2	Understand the significance of differentiability for complex functions	K2
	and familiar with the Cauchy-Riemann equations;	K2
CLO3	Compute the Taylor and Laurent expansions of simple functions,	K3
	determining the nature of the singularities and calculating residues;	KS
CLO4	Use Cauchy Residue Theorem to evaluate integrals.	K4

Mapping with Programme Learning Outcomes

CLOs/POs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1	S	S	S	S	S	S	S
CLO2	S	M	S	S	S	S	S
CLO3	S	S	M	S	S	S	S
CLO4	M	S	S	M	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

SEMESTER – VICORE PAPER -XI COMPLEX ANALYSIS WITH TABLEAU

Credits: 5 Hours: 88 Subject Code: TH21C11

UNIT I 18 hrs

Complex number system : Complex number system-Field of complex numbers-scalar multiplication of a complex number –Field of real numbers – Expression of (α,β) in the form of α +i β – Conjugation- Absolute value of a complex number –Inequalities in terms of moduli-Examples. Complex plane: Representation of complex number by points-nth roots of a complex number- Geometrical Addition-Angle between two rays-Equations of Straight lines and circles –Elementary transformation ; Infinity and extended complex plane-Stereographic projection-Fixed points-Problems ; Analytic Functions-Complex functions – Limit of a Function-Continuity of a function –Uniform continuity-Differentiability and analyticity of a function - Necessary condition for differentiability – Sufficient condition for differentiability - CR equations in polar coordinates - Complex function on a function of z and \overline{z} - problems. Simple visualizations using Tableau

UNIT II 18hrs

Bilinear Transformation –Special bilinear transformations- Circle and inverse points – Problems – Complex Integration: Simple rectifiable oriented curves -Integration of complex functions – Simple integrals using definition –Definite Integrals-Interior and Exterior of a closed curve-Simply connected region-Cauchy's fundamental theorem(statement only)-Integral along an arc joining two points - Cauchy's integral formula and formula for derivatives -Problems.

UNIT III 17hrs

Zeros of a function – Related integral theorems: Cauchy's inequality - Liouville's theorem –Fundamental theorem of algebra – Maximum modulus theorem – Gauss' mean value theorem, Theorem on the mean of the values of a harmonic function on a circle – Problems- Simple visualizations using Tableau

UNIT IV 17hrs

Taylor- Zeros of an Analytic function-Laurent's series-Cauchy product and division – Singular points –Isolated singularities-Removable singularities- pole-Essential singularity-Behaviour of a function at an isolated singularity- Determination of the nature of singularities- Nature of singularity at infinity-Problems.

UNIT V 18hrs

Residue-calculation of residues-Real definite integrals: Integrals of type I $\int_{0}^{2\pi} f(\cos\theta, \sin\theta) d\theta$ type II $\int_{-\pi}^{\infty} \frac{P(x)}{Q(x)} dx$ evaluation – Problems – Meromorphic functions:

Principle of argument – Rouche's theorem – Fundamental theorem of algebra – Function meromorphic in the extended plane – problems.

Text Book

S.No	Author	Title of the book	Publishers
1	P. Duraipandian, Kayalal	Complex Analysis	S.Chand & Company
	Pachaiyappa		Pvt.Ltd,2014
	https://public.tableau.com/en-		
	<u>us/s/download</u>		

Books for reference

S.No	Author	Title of the book	Publishers
1	Shanti Narayan	Theory of functions of a complex	S.Chand& company, 2010
		variable	
2	J.N.Sharma	Functions of a complex variable	Krishna
			PrakashanMandir, 1980
3	P. Duraipandian,	Complex Analysis	Emerald Publishers-
	Laxmi		revised edition 1994.
	Duraipandian and		
	D.Muhilan		

UNIT I : Chapter I, II, IV

UNIT II : Chapter VII Sec. 7.1-7.3, Chapter VIII Sec 8.1-8.9

UNIT III: Chapter VIII Sec 8.10- 8.13

UNIT IV : Chapter IX UNIT V : Chapter X, XI

Note

Question paper setters to confine to the above text books only.

Pedagogy

Chalk and Talk, Seminar, Group discussion, Numerical Exercises, Quiz.

- 1. Dr. K.Sumathi, Associate Professor and Head, Department of Mathematics
- 2. Dr. G.Arthi, Assistant Professor, Department of Mathematics.

COURSE	LINEAR ALGEBRA WITH	Category	L	T	P	Credit
CODE TH21C12	MAPLE APPLICATIONS SEMESTER VI	Theory	88	2		5

- ➤ To understand the concepts of the algebraic properties of vectors, vector spaces and matrices.
- > To understand the concept of transformations

Prerequisite

➤ Knowledge in matrices and transformations

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO	CLO Statement	Knowledge
Number		Level
CLO1	Learn the basics of matrices and vector spaces	K1
CLO2	Understanding of linear independence, span, and basis.	K2
CLO3	Compute the inner product of two vectors	K3
CLO4	Demonstrate the relationship between the operations on linear	K4
	transformations and their corresponding matrices	

Mapping with Programme Learning Outcomes

CLOS/POS	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S

S - Strong; M - Medium; L-Low

Syllabus

SEMESTER VI– CORE PAPER XII LINEAR ALGEBRA WITH MAPLE APPLICATIONS

Credits: 5 Hours:88

Subject Code: TH21C12

UNIT I 18hrs

Rank of a matrix- General solution of a system- Matrix- Matrix product. Linear transformations: Functions, Mappings and Transformation- Domain, Co- domain, and Range-Injective and Surjective Mappings-Linear Transformations- Using Matrices to Define Linear Maps- Injective and Surjective Linear Transformations- Effects of Linear Transformations- Effects of Transformations on Geometrical Figures-Composition of two Linear Mappings-Application: Data Smoothing.

UNIT II 17hrs

General Vector Spaces: Vector spaces- Theorems on Vector Spaces-Linearly Dependent Sets- Linear Mapping. Matrices: Symmetric Matrices- Skew- Symmetric Matrices- Linear Transformations. Matrix Inverses: Square Matrices- Elementary Matrices and LU Factorization-Computing an Inverse- Invertible Matrix Theorem-Mathematical Software.

UNIT III 18hrs

Bases and Dimension: Basis for a Vector Space- Coordinate Vector-Isomorphism and Equivalence Relations- Finite Dimensional and Infinite-Dimensional Vector Spaces-Linear Transformation of a set-Dimensions of Various Subspaces-Caution. Eigen Values and Eigen Vectors: Introduction- Eigen Vectors and Eigen Values- Using Determinants in Finding Eigen values-Linear Transformations-Distinct Eigen Values-Bases of Eigen Vectors-Application: Powers of Matrix- Characteristic Equation and Characteristic Polynomial.

UNIT IV 17hrs

Inner-Product Spaces: Inner-Product Spaces and their Properties-The Norm in an Inner- Product Space. Orthogonality: The Gram-Schmidt Process- UnNormalized Gram-Schmidt Algorithm- Modified Gram-Schmidt Process- Linear Least- Squares Solution- Gram Matrix-Distance from a Point to Hyper plane-Mathematical Software.

UNIT V 18hrs

Hermitian Matrices and the Spectral Theorem: Hermitian Matrices and Self –Adjoint Mappings- Self -Adjoint Mappings- The Spectral Theorem- Unitary and Orthogonal Matrices- The Cayley- Hamilton Theorem-Quadratic Forms-Application: World Wide Web Searching- Mathematical Software. Matrix Factorizations and Block Matrices: LU Factorization- LL^T Factorization: Cholesky Factorization- LDL^T Factorization- Application: Linear Least-Squares Problem-Mathematical Software.

Text Books

S.No	Author	Title of the book	Publishers
1	Ward Cheney David Kincaid	Linear Algebra Theory and Applications	Jones and Bartlett India Pvt. Ltd. 1 st Edition (2010)
	http://www.maplesoft.com/applications/		

Books for Reference

S.No	Author	Title of the book	Publishers
1.	R.J. Goult	Applied linear Algebra	Ellis Horwood Ltd, Publisher Chichester,1978

UNIT I : Chapter 1:Sections - 1.3 (Pg. No.: 80 to 88)

Chapter 2: Section- 2.3 (Pg. No.: 165 to 185)

UNIT II : Chapter 2: Section- 2.4 (Pg. No.: 198 to 214)

Chapter 3: Section- 3.1(Pg. No.: 240,241&243)

Section- 3.2(Pg. No.: 270,273 to 275, 277,283)

UNIT III : Chapter5: Section-5.2 (Pg. No.:387 to 410)

Chapter 6: Sections – 6.1(Pg. No. 460 to 471)

UNIT IV : Chapter 7: Sections-7.1, 7.2(Pg. No. 508 to 514,544 to 563).

UNIT V : Chapter 8: Sections -8.1, 8.2 (Pg. No. 575to 595, 606 to 614,627 to 629)

Note

Question paper setters to confine to the above text books only.

Pedagogy

Chalk and Talk, Seminar, Group discussion, Numerical Exercises, Quiz.

- 1. Dr. K.Sumathi, Associate Professor, Department of Mathematics.
- 2. Dr. R.Lakshmi, Assistant Professor, Department of Mathematics.

COURSE	OPERATIONS RESEARCH	CATEGORY	L	T	P	CREDIT
CODE TH21C13	WITH TORA SEMESTER VI	Theory	103	2	-	5

- To present students the elements and importance of Understanding the meaning, purpose, and tools of Operations Research
- ➤ To define and recognize the basic concepts of Operations Research.
- To enable the students to know the applications and the Limitations of Operations Research and simulation.

Course Learning Outcomes

Upon the successful completion of the course students will be able to

CLO	CLO Statement	Knowledge
Number		Level
CLO1	Understand the characteristics of different types of decision-making environments and the appropriate decision making approaches and tools to be used in each type.	K1
CLO2	Identify and develop operational research models from the verbal description of the real system	K2
CLO3	Know how to use variables for formulating mathematical models in management science, industrial engineering and transportation science and in real life.	К3
CLO4	Develop a report that describes the model and the solving technique, analyse the results and propose recommendations in language understandable to the decision-making processes in Management Engineering	K4

Mapping with Programme Learning Outcomes

CLOs/PLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

SEMESTER VI– CORE PAPER XIII OPERATIONS RESEARCH WITH TORA

Credits: 5 Hours:103

Subject Code: TH21C13

UNIT I 20 hrs

Operations Research –An overview - * Natures and features of OR* Linear Programming problem : Mathematical Formulation-graphical solution-Linear Programming: Simplex Method – Two - Phase method - Duality in Linear programming – Dual simplex method-problems using TORA

UNIT II 20 hrs

Integer Programming: Gomory's All I.P.P method - * Construction of Gomory's constraints* Fractional Cut method - All integer - Transportation Problem - Finding an Initial Basic Feasible Solution - Test for optimality - Transportation Algorithm(Modi Method) - Assignment

UNIT III 21 hrs

Dynamic Programming: Recursive Equation Approach- *Characteristics of Dynamic Programming*- Dynamic Programming Algorithm - Games and Strategies – Two- person Zero-Sum games- Maximin-Minimax Principle-Games Without Saddle Points-Mixed Strategies- Graphical Solution of 2 x n and m x 2 games-problems using TORA.

UNIT IV 21hrs

Inventory Control: – Costs Associated with Inventories- Factors Affecting Inventory Control- Economic Order Quantity- Deterministics Inventory Problems with no Shortages - Queueing Theory- *Elements of a Queuing System*-Operating Characteristics of Queueing System-Probability Distribution –Classification of Queueing Models-Poisson Queueing Systems-problems using TORA.

UNIT V 21 hrs

Network Scheduling By PERT / CPM. Distinction between PERT & CPM-problems using TORA.

Text Book

_ •	TOAT BOOK					
S.	Author	Title of the book	Publishers			
No						
1	KantiSwarup ,P.K.Gupta and Man Mohan	A Text Book of	Twelfth Thoroughly			
		operations research	Revised Edition			
			Published By sultan			
			chand& sons, 2008			
2	https://sourceforge.net/directory/?q=tora+f					
	or+linear+programming					
	· · · · · · · · · · · · · · · · · · ·					

UNIT I : Chapter 1 –Sections 1.1 & 1.2

Chapter 2 – Sections 2.1 & 2.2 Chapter 3 – Sections 3.1 to 3.5,3.6

Chapter 4 -Sections 4.1 to 4.4

Chapter 5 – Section 5.1, 5.2 & 5.9

UNIT II : Chapter 7-Sections 7.1 to 7.4,

Chapter 10-Sections 10.1 to 10.9, 10.10,10.12.

Chapter 11-Sections 11.1 to 11.3

UNIT III: Chapter 13-Sections 13.1 to 13.4

Chapter 17-Sections 17.1 to 17.6

UNIT IV: Chapter 19-Sections 19.1 to 19.6

Chapter 20-Sections 20.1 to 20.8(in 20.8 Model I, II, III, IV Only)

UNIT V : Chapter 21-Sections 21.1 to 21.7

Reference Books

S. No	Author	Titleofthe book	Publishers	Year ofPublication
1.	J	Introduction toOperationsResearch	Tata McGraw - Hill	2001

2	Kalavathy.S	OperationsResearch	Vikas	2008
			publishinghouse	
3	KantiSwarupEtal	OperationsResearch	Sultan Chand	2009
			&Sons	
4	ManmohanandGupta	OperationsResearch	Sultan Chand	2011
	PK		&Sons	
5	D.S.Cheema	OperationsResearch	LaxmiPublicatons	2010
		_		

Note

Question paper setters to confine to the above text books only.

Pedagogy

Chalk and Talk, Seminar, Group discussion, Numerical Exercises, Quiz.

- 1. Dr. K.Sumathi, Associate Professor, Department of Mathematics.
- 2. Dr. R.Lakshmi, Assistant Professor, Department of Mathematics

COURSE	ELECTIVE-MATHEMATICAL MODELLING WITH OPEN	CATEGORY	L	T	P	CREDIT
CODE TH21E03	MODELLING WITH OF EN MODELICA SEMESTER VI	Theory	103	2	-	5

- To understand how mathematical models are formulated, solved and interpreted
- To equip students with the basic mathematical modelling skills
- To use MATLAB effectively to solve problems involved in mathematical modeling

Prerequisite

➤ Knowledge on calculus, ordinary differential equations, matrices, linear algebra, basic knowledge of probability and computational skills

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO	CLO Statement	Knowledge
Number		Level
CLO1	Understand what is a mathematical model and to know the steps	K1
	involved in a mathematical modeling process	
CLO2	State and explain the different classifications of mathematical	K2
	models	
CLO3	Learn the essential features of a good model and to discuss the	K3
	benefits of using a mathematical model	
CLO4	Understand the applications of mathematical modelling to solve	K4
	problems in engineering, physical, biological, and social sciences	

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S

S- Strong; M-Medium; Low

Syllabus

SEMESTER VI – ELECTIVE III MATHEMATICAL MODELLING WITH OPEN MODELICA

Credits: 5 Hours: 103

Subject Code: TH21E03

UNIT I 21hrs

Mathematical Modelling Need , Techniques, Classifications and Simple Illustrations : Simple Situations Requiring Mathematical Modelling – The Technique of Mathematical Modelling – Classification of Mathematical Models – Some Characteristics of Mathematical Models – Mathematical Modelling Through Geometry – Mathematical Modeling Through Algebra-

Mathematical Modeling Through Trigonometry - Mathematical Modeling Through Calculus – Limitations of Mathematical Modelling-solving problems using open Modelica.

UNIT II 21hrs

Mathematical Modeling Through ODE of First order: Mathematical Modeling Through Differential Equations – Linear Growth and Decay Models – Non – Linear Growth and Decay Models – Compartment Models – Mathematical Modelling in Dynamics Through Ordinary Differential Equations of First Order – Mathematical Modelling of Geometrical Problems Through Ordinary Differential Equations of First Order-solving problems using open Modelica.

UNIT III 21hrs

Mathematical Modelling Through Systems of ODE of First Order: Mathematical Modelling in Population Dynamics – Mathematical Modelling of Epidemics Through Systems of Ordinary Differential Equations of First Order – Compartment Models Through Systems ODE of First Order – Mathematical Modelling in Economics Through Systems of ODE of First Order – Mathematical Modelling in Dynamics Through Systems of ODE of First Order-solving problems using open Modelica.

UNIT IV 20hrs

Mathematical Modelling Through Systems of ODE of Second Order: Mathematical Modelling of Planetary Motions – Mathematical Modelling of Circular Motion and Motion of Satellites – Mathematical Modelling Through Linear Differential Equations of Second Order-solving problems using open Modelica.

UNIT V 20hrs

Mathematical Modelling Through Systems of PDE of Second Order: Situations Giving Rise to PDE Models – Mass- Balance Equations: First Method of Getting PDE Models – Momentum – Balance Equations: The Second Method of Obtaining PDE Models – Variational Principles: Third Method of Obtaining PDE Models – Model of Traffic Flow on a Highway-solving problems using open Modelica.

Text book

S.No	Author	Title of the book	Publishers
1	J.N.Kapur	Mathematical modelling	New Age International(P) Ltd,Publishers,New Delhi.
2	https://www.openmodelica.org/		

Reference Books

S.No	Author	Title of the book	Publishers
1	F.R.Hiordano.,M.D.Weir.	A First Course in	3 rd edition, vikas publishing house.
	and W.P.Fox.,	Mathematical Modelling	2003
2	Clive L.Dym.,	PrinciplesofMathematical	Second edition, Academic press,
		Modelling	Burlington,2006

Unit I	Chapter 1	Sections $-1.1-1.9$
Unit II	Chapter 2	Sections -2.1 -2.6
Unit III	Chapter 3	Sections $-3.1-3.6$
Unit IV	Chapter 4	Sections $-4.1-4.3$
Unit V	Chapter 6	Sections – 6.1 -6.4,6.6
Note	_	

Question paper setters to confine to the above text books only.

Pedagogy

Chalk and Talk, Seminar, Group discussion, Numerical Exercises, Quiz.

- 1. Dr. K.Sumathi, Associate Professor, Department of Mathematics.
- 2. Dr. S.Aiswarya, Assistant Professor, Department of Mathematics

COURSE	ELECTIVE IV	Category	L	Т	P	Credit
CODE TH21E04	DISCRETE MATHEMATICS SEMESTER VI	Theory	103	2	-	5

➤ To introduce the basic Mathematics which is applicable for Computer Science.

Prerequisite

➤ Knowledge in basic concepts of Mathematics and logical reasoning

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO	CLO Statement	Knowledge
Number		Level
CLO1	Understand and Application of Mathematical logic and definitions and well formed formula. Apply the understanding of Tautology Equality relations	K1
CLO2	Reason logically and understand relations, Diagraph and lattice.	K2
CLO3	Apply algebraic concepts in coding theory using group codes	К3
CLO4	Understand use of groups and codes in Encoding Decoding	K4

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

SEMESTER VI – Elective IV DISCRETE MATHEMATICS

Credits: 5 Hours: 103

Subject Code: TH21E04

UNIT I: 20hrs

Logic: IF - Statement - Connectives - Atomic and compound statements- Well formed formulas - Truth tables - Tautology - Tautological implications and equivalence - Replacement process.

UNIT II 21hrs

Normal forms: Normal forms – Principal normal forms – Theory of inference – open statements – quantifiers – theory of inference for Predicate calculus – Statements involving more than one quantifiers.

UNIT III 20 hrs

Coding theory: Introduction – Hamming distance – Encoding a message – Group codes – procedure for generating group codes – Decoding and error correction – An example of simple error correcting code.

UNIT IV 21 hrs

Automata and Languages: Finite Automata – Definition – representation – acceptability of a string by a FA – Languages accepted by a FA – Equivalence of a FA and NFA – Procedure of finding a FA equivalent to a given NFA.

UNIT V: 21hrs

Push down Automata : Push down automata – definition – description – properties of move relation – acceptance by a PDA – equivalence of two types of a acceptance by PDA – context free languages and PDA –turing machines

Text Books

S.No	Author				Title of the	Publishers
					book	
1	Dr. M.K. V	enkatara	aman,		Discrete	First edition Reprint 2003,
	Dr. N. Sridl	naran an	ıd N.		Mathematics	The National Publishing
	Chandrasek	aran				company, Chennai
	UNIT I	:	Chapter 9	Se	ctions 9.1-9.9	
	UNIT II	:	Chapter 9	Se	ctions 9.11-9.18	
	UNIT III	:	Chapter 8	Se	ctions $8.1 - 8.8$	
	UNIT IV	:	Chapter 12	Se	ctions 12.1-12.10)
	UNIT V	:	Chapter 12	Se	ctions 12.23-12.	30

Books for Reference

S.No	Author	Title of the book	Publishers
1	T.Veerarajan	Discrete Mathematics with Graph Theory and Combinatorics	Tata mcgraw-Hill publishing company Limited, 2008
2	Kenneth H. Rosen	Discrete Mathematics and its Applications	Mc.Graw Hill, 2002.
3	J.P.Tremblay and R.P.Manohar	Discrete mathematical Structures with Applications to Computer Science	McGraw Hill Publishing Company, Edition 1997, Reprint 2010
4	Narsing Deo	Graph Theory with applications to Engineering and Computer science	Prentice-Hall of India pvt. Ltd.,New Delhi, 2004
5	Bernard Kolman, Robert C. Busby, Sharon Culter Ross, Nadeen-ur- Rehman	Discrete Mathematical Structures	Pearson Education,5th edition,2004

Note

Question paper setters to confine to the above text books only.

Pedagogy

Chalk and Talk, Seminar, Group discussion, Numerical Exercises, Quiz.

- 1. Dr. S.Aiswarya, Associate Professor and Head, Department of Mathematics
- 2. Dr. D. Sasikala, Assistant Professor, Department of Mathematics.

SEMESTER VI – Advanced Learners' Course ASTRONOMY II

Credits 5 Hours:60

Subject Code: TH16AC4

OBJECTIVE

To study the solar system and expose the mathematical tools used to solve the mysteries of the universe.

UNIT I

Time: Equation of time – seasons – calendar – conversion of time.

UNIT II

Annual parallax – abberation.

UNIT III

Precession – Nutation.

UNIT IV

The moon – eclipses.

UNIT V

Planetary phenomena – The Stellar Universe.

Text Book:

_ 0110	2 0 0 1 1 1		
S.N	Author	Title of the	Publishers
0		book	
1	Mr. S. Kumaravelu and Mrs.	Astronomy	Revised edition 2005.
	Susheela Kumaravelu		

Unit I	Chapter 7	Headings 166 – 189
Unit II	Chapter 9	Headings 190, 195 – 203
Unit III	Chapter 10	Headings 204 – 214
Unit IV	Chapter 12, 13	Headings 229 – 284
Unit V	Chapter 14, 18	Headings $285 - 304$, $341 - 359$

- 1. Dr. K.Sumathi, Associate Professor, Department of Mathematics.
- 2. Dr. G. Arthi, Assistant Professor, Department of Mathematics.

SEMESTER VI- Advanced Learners' Course FUZZY MATHEMATICS II

Hours: 60 **Credits** : 5

Subject Code: TH16AC5

UNIT I

Fuzzy Relation Equations Sup-i compositions of Fuzzy relations-Inf – ωi compositions of Fuzzy relations-Fuzzy relation equations based on $\sup -i$ and $\inf -\omega i$ compositions.

UNIT II

Solution method – Approximate solutions – The use of neural networks.

UNIT III

Possibility theory - Fuzzymeasures - Evidence theory - Possibility theory - Fuzzy sets and possibility theory.

UNIT IV

Fuzzy logicx – Fuzzy propositions – Fuzzy quantifiers – Inference from conditional Fuzzy propositions – Inference from conditional and qualified propositions.

UNIT V

Uncertainty based information- Informationand uncertainty – Non specificity of crisp sets and Fuzzy sets – Fuzziness of Fuzzy sets – Uncertainty in evidence theory.

Te	Text Book:								
		Fuzzy ser	ts and Fuzzy logic Theory and ons	Prentice Hall of India, Fourth printing June 2001					
	Yuan.,								
Un Un Un	it I it II it III it IV	Chapter 6 Chapter 7 Chapter 8	Sections 7.1 – 7.4 Sections 8.3, 8.4, 8.6, 8.7						
	Unit V Chapter 9		Sections 9.1 - 9.5						
\mathbf{C}_{0}	Course Designers:								

- 1. Dr. C.R.Parvathy, Associate Professor and Head, Department of Mathematics
- 2. Dr. D. Sasikala, Assistant Professor, Department of Mathematics.

SEMESTER VI- Advanced Learners' Course

TOPICS IN FLUID DYNAMICS II

Credits : 5 Hours: 60

Subject Code: TH16AC6

OBJECTIVE

To introduce the basic concepts of fluid dynamics and expose the students to the practical applications of mathematics.

UNIT I

Motion in two dimensions: images, image of a source with regard to a plane – image of a doublet with regard to a plane, circle theorem, image of source with regard to a circle – image of doublet with regard to a circle

UNIT II

General motion of cylinder in two dimensions – motion of a circular cylinder in a uniform stream - Blasius theorem – equation of motion of a circular cylinder with circulation

UNIT III

The aerofoil – Joukowski transformation – Kutta joukowski theorem – d' Alemberts' paradox

UNIT IV

Vortex motion: Vortex line – properties of the vortex – strength of a vortex – rectilinear vortex – velocity component – center of vortices – a case of a two vortex filament – stream function when the strength of the vortex filaments are equal – vortex pair – vortex doublet – vortex inside an infinite circular cylinder

UNIT V

Navier stokes theorem – equation of motion of a viscous fluid – equation of energy – dissipation of energy – vorticity and circulation in viscous fluids – diffusion of vorticity – the equation of state

Text Book:										
1	Shanthi	Swarup	Fluid dynamics		Krishna	Prakashan	media	(p)	ltd,	
				Meerut11th edition 2003,						
UNIT I :		:	Chapter 1	Sections 5.8-5.13						
UN	II TI	:	Chapter 2	Sections 5	5.17 –5.18,	, 5.22,5.24				
UN	III TIV	:	Chapter 3	Sections $5.34 - 5.37$						
UNIT IV :		Chapter 4	Sections $6.0 - 6.10$							
UN	NIT V	:	Chapter 5	Sections 9	9.13, 9.15-	9.19				

- 1. Dr. C.R. Parvathy, Associate Professor and Head, Department of Mathematics
- 2. Dr. R.Lakshmi, Assistant Professor, Department of Mathematics

GOLIDAE	COURGE NAME	CATEGORY	L	T	P	CREDIT
COURSE CODE TH21SB03	COURSE NAME - DATA VISUALIZATION AND TABLEAU SEMESTER VI	Theory	41	4	-	4

- ➤ To introduce the fundamental problems, concepts, and approaches in the design and analysis of data visualization systems.
- ➤ Fundamental concepts of data visualization and explore the Tableau interface, identifying and applying the various tools Tableau

Course Learning Outcomes

Upon the successful completion of the course, students will be able to

CLO	CLO Statement	Knowledge
Number		Level
CLO1	Understand the foundations of the data visualization and its tools	K1
CLO2	Explain how to connect data	K2
CLO3	Apply effective best practice design principles to data visualizations and be able to illustrate examples	К3
CLO4	Analyze data using Tableau	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7
CLO1	S	S	S	S	S	S	S
CLO2	S	S	S	S	S	S	S
CLO3	S	S	S	S	S	S	S
CLO4	S	S	S	S	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

DATA VISUALIZATION AND TABLEAU

Credits: 3 Hours: 41

Subject code: TH21SB03

UNIT I: 9 Hrs

Ways of Representing Visual Data-Techniques Used for Visual Data Representation-Types of Data Visualization- Applications Data Visualization- Visualizing Big Data-Deriving Business Solutions- Turing Data into Information- Tools Used in Data Visualization- Open -Source Data Visualization- Analytical Techniques Used in in Big Data Visualization.

UNIT II: 9 Hrs

A Brief Introduction to Tableau Desktop: Starting with Tableau-Downloading the Tableau trial- Installing the trial software- Looking at the Tableau Workspace- Starting Tableau- Viewing a sample workbook or data source- seeing what Tableau can really do. Understanding the basics: Getting to know the Tableau Desktop Environment- Looking at the Tableau start page- Understanding the Data source page- Using worksheets to explore data-Getting to know the Dashboard workspace- Understanding the Story workspace.

UNIT III: 9 Hrs

Connecting to Data: Preparing your data — Using the data preparation features—Targeting data sources for manual corrections—Establishing a connection to your Data source—Keeping your Data fresh—Visualizing Data: Using the shelves and Cards—The columns shelf—The rows shelf—Using a quick filter to exclude data—The filters shelf—pages shelf—Marks card-Modifying the view—Fitting the space—Adding annotations—Adding mark lables.

UNIT IV 7 Hrs

Understanding the Tableau desktop environment: Looking at the Menus- File menu-Data menu- worksheet menu- Dashboard menu- Story menu- Analysis menu- Map menu-Format menu- Server menu- Window menu- Help menu- Making use of the Toolbar-Organizing sheets.

UNIT V 7 Hrs

Considering Data display options: Using show me- Understanding the chart options in show me- Area charts(continuous)- Area charts(discrete)- Box and whisker plot- Bullet graphs- Circle views- Dual lines- Filled maps- Gantt- Heat maps- Highlight tables-Histogram- Horizontal bars- Lines(continuous)-Lines(discrete)- packed bubbles-Pie charts- Scatter plots-Side by side bars- Side by side circles-Stacked bars- Symbol maps- Text tables- Tree maps- viewing your data- Examining the data used in a view-Examining a subset of the data.

Text Books:

S.No.	Author Name	Title of the Book	Publishers
1.	DT Editorial Services	Big Data Black Book	Dreamtech Press
		Unit I: Chapter 26,	
		Page.No. 715-731	
2.	Molly Monsey, Paul	Tableau for Dummies	Wiley India Pvt. Ltd.
	Sochan	Unit II: Chapter 1,3	
		Page.No. 7-14, 35-42.	
		Unit III: Chapter 5,6,	
		Page.No.67-96	
		Unit IV: Chapter 7,	
		Page.No. 99-115	
		Unit V: Chapter 8,	
		Page.No.119-141	

Books for Reference

S.No.	Author Name	Title of the Book	Publishers
1.	Chun-houh Chen, Wolfgang Hardle, Antony Unwin	Handbook of Data Visualization	Springer publication,2008
2.	Joshua N. Milligan	Learning Tableau - How Data Visualization Brings Business Intelligence to Life	Packt Publishing, Revised edition

- 1. Dr. (Mrs).K.Sumathi, Associate Professor and Head, Department of Mathematics
- 2. Dr. (Mrs).C.R.Parvathy, Associate Professor, Department of Mathematics

Allied Courses Offered to other Programs	

For the Students Admitted During the Year 2021 -2022

<u>Allied Courses Offered to other Programs</u> For the Students Admitted During the Year 2021 -2022

Semester I

B.SC (CS), B.SC (CS with Cognitive Systems), BCA, B.SC (IT)- Semester I & B.SC (FPM)-

Semester III– Allied – Numerical and Statistical Techniques (TH21A03)

B. Com – Semester III &B.COM (CA, E-COM, FS, A & F) - Semester I

- Allied – Mathematics for Commerce – (TH21A07)

B. Com (BA) – Semester I – Allied - Statistics I (TH21A15)

BBA, BBA (IB & RM), BBA (BPM) – Allied - Mathematics for Management I (TH21A02)

B.SC CS (AI) - Allied - Linear Algebra(TH21A25)

Semester II

B.SC (CS), B.SC (CS with Cognitive Systems), BCA, B.SC (IT) - Semester II & B.SC (FPM) -

Semester IV - Allied - Discrete Mathematics (TH21A06)

B. Com –Semester IV & B.COM (CA, E-COM, FS, A & F) - Semester II

Allied – Statistics for Commerce – (TH21A08)

B. Com (BA) – Semester II – Allied - Statistics II (TH21A16)

BBA, BBA (IB & RM), BBA (BPM) – Allied - Mathematics for Management II (TH21A24)

B.SC CS (AI) - Allied – Statistics For Computer Science-I (TH21A26)

Semester III

B.SC (CS), B.SC (CS with Cognitive Systems), BCA, B.SC (IT) - Allied – Optimization

Techniques (TH21A13)

B.Sc (Biotechnology) – Allied – Statistics for Biotechnology (TH21A28)

Semester IV

B.Sc (Biotechnology) – Allied – Advanced Statistics for Biotechnology (TH21A30)

COLIDGE	COURSE NAME	CATEGORY	L	T	P	CREDIT
COURSE CODE TH21A03	ALLIED - NUMERICAL AND STATISTICAL TECHNIQUES SEMESTER I	Theory	86	4	-	5

- To present students the Basic concepts of Numerical Methods and Statistics.
- To enable the students to find the practical applications to the real world problems.

Course Learning Outcomes

Upon the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Recall basic Mathematics and Statistical concepts	K1
CLO2	Interpret results from the application of standard statistical and numerical methods.	K2
CLO3	Understand the concepts of Numerical differentiation and Theoretical distributions	К3
CLO4	Applying numerical and statistical methods to solve complex problem.	К3
CLO5	Analyse and evaluate the accuracy of common numerical and statistical methods.	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	M	S	S	S
CLO2	S	S	M	S	S
CLO3	S	S	S	M	S
CLO4	S	S	S	S	M
CLO5	S	M	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

SEMESTER I / II

Numerical and Statistical Techniques

(Common to B.SC (CS), B.SC (CS with Cognitive Systems), BCA, B.SC (IT)- Semester I B. SC(FPM) Semester III)

Credits:5 Hours:86

Subject Code: TH21A03

Unit I 17 Hrs

SolutionofLinear Simultaneous Equations: Gauss elimination - Gauss Jordan - Gauss Seidel and Gauss Jacobi methods -simple problems. Interpolation: Newton Forward and Backward Interpolation Formulae.

Unit II 16 Hrs

Numerical Differentiation, Formulae for Derivatives: Newton's Forward Difference - Newton's Backward Difference, Numerical Integration: Introduction, Newton-Cotes Quadrature formulas: trapezoidal rule, Simpson's 1/3 and 3/8 rules, Taylor's series method.

Unit III 17Hrs

Skewness - Correlation analysis: Introduction - Significance of the study of correlation - correlation and causation - Types of correlation - Methods of studying correlation - Graphic method - Karl Pearson's coefficient of correlation - Coefficient of correlation and probable error - Coefficient of determination - Properties of the coefficient of the correlation - Rank correlation coefficient - Features of Spearman's correlation coefficient, Regression analysis.

Unit IV 17 Hrs

Probability: Introduction - probability defined - Importance of the concept of probability - Calculation of probability - Theorems of probability (statements only) – Mathematical expectation-Simple problems.

Unit V 19 Hrs

Theoretical Distributions: Binomial distribution - Poisson distribution and normal distribution (without derivations & proof).

Text Books							
S. No	Author	Title of the	Publishers	Year of			
		book		Publication			
1.	B.S. Grewal	Numerical	Khanna Publishers	2014			
		Methods in					
		Engineering and					
		Science with					
		Programs in C &					
		C++					
	Unit I: Chapter III &VII: 3.3, 3.4, 3.5 &7.1-7.3						
	Unit II: Chapter VIII& X: 8.1, 8.2:(1,2),8.4, 8.5:(I, II, III),10.3						
2.	S.P.Gupta	Statistical	Sultan Chand &	2005			
		methods	Sons Publications				
	Unit III: Volume I: Chapter 9(till measures of skewness),10,11. (pg: 329-341, 377-						
	412, 435-454)						
	Unit IV: Volume-II Chapter 1(till Baye's theorem) (pg: 751-771)						
	Unit V: Volume-II Chapter2 (pg:805-824, 826-834, 836-856)						

Reference Books

S. No	Author	Title of the book	Publishers	Year of Publica tion
1.	P.A.Navanitham	Business Mathematics And Statistics	Jai Publishing Company	2003
2.	S.C Gupta and V.K. Kapoor	Fundamentals of Mathematical Statistics	Sultan Chand & Sons Publications	2001
3.	P.Kandasamy, K.Thilagavathy and	Numerical Methods	S.Chand and company LTD	Reprint 2007

	K.Gunavathy			
4.	V.K.Kapoor	Fundamentals of	ultan Chand & Sons	2007
		Applied Statistics		

MOOC learning

https://nptel.ac.in/courses/111/107/111107105/

(Lectures by Prof. Ameeya Kumar Nayak and Prof. Sanjeev Kumar, Department of

Mathematics, Indian Institution of Technology Roorkee)

Lecture 02 Gaussian elimination with partial pivoting

Lecture 04 Jacobi and Gauss Seidel methods

Lecture 20 Newton's Forward Difference & Newton's Backward Difference

Lecture 34 Simpsons 1/3rd rule and 3/8 rule

https://nptel.ac.in/courses/111/106/111106112/

(6 Lectures by Prof.G.Srinivasan, Department of Management Studies, Indian Institution of

Technology Madras)

Lecture 12 Probability

Lecture 13 Rules of probability

Lecture 19 Binomial distribution

Lecture 20 Poisson distribution

Note

Question paper setters to confine to the above text books only

Pedagogy

Chalk and talk, ppt, Group discussion, Seminar, Quiz, Assignment

- 1.Ms.J.Rejula Mercy, Assistant Professor, Department of Mathematics
- 2. Ms.S.Deepa, Assistant Professor, Department of Mathematics

COURSE	COURSE NAME-	CATEGORY	L	T	P	CREDIT
CODE TH21A07	ALLIED MATHEMATICS FOR COMMERCE SEMESTER I	Theory	86	4		5

- To present the basic concepts of Mathematics to the students.
- To enable the students to find the practical applications to the real-world problems.

Course Learning Outcomes

Upon the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Recollect about several diverse examples of mathematics not in secondary school mathematics, problems using mathematics in unfamiliar settings, and explain why mathematical thinking is valuable in daily life based on the series and Mathematics of Finance.	K1
CLO2	Engage in analysing, solving, and computing real-world applications on the limits of Algebraic functions and simple differentiation	K2
CLO3	Apply the abilities to describe the concepts of simple integration and its application in business. Solve problems in a range of mathematical applications using the integral.	K2
CLO4	Understand and formulate Linear Programming models for service and manufacturing systems, and apply operations research techniques and algorithms to solve these LP problems and transportation problems	К3
CLO5	Categories: simple models like assignment problems, travelling salesman to improve decision –making and develop critical thinking and objective analysis of decision problems.	K4

Mapping with Programme Learning Outcomes

CLOs/PLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	S	M	S	M
CLO2	M	S	M	S	S
CLO3	M	S	S	M	S
CLO4	S	M	M	S	S
CLO5	M	S	M	S	M

S- Strong; M-Medium; L-Low

SEMESTER I / III

ALLIED - MATHEMATICS FOR COMMERCE

(COMMON TO SEMESTER I -B.COM (CA, E-COM, FS, A&F) & SEMESTER III B.COM (Aided & SF))

Credits: 5 Hours: 86

Subject Code: TH21A07

Unit I 17 Hrs

Arithmetic Progression - Geometric Progression. Simple Interest - Compound Interest - Annuities.

Unit II 17 Hrs

Differentiation: Introduction – Limits – Limits of a function – properties of limits – Standard limit theorems – Continuity – Properties of Continuous functions – Differentiation – Derivatives of x^n - Derivatives of e^x – Derivatives of $\log e^x$ – product rule – quotient rule – Function of a function rule – Logarithmic Differentiation – Differentiation of Implicit function – Relation between dy/dx and dx/dy – Parametric Differentiation – Successive Differentiation – Applications of Derivatives – Marginal cost – Marginal revenue – Elasticity – Relation between marginal revenue and elasticity of demand -. Maxima and minima – Point of inflexion (Excluding Trigonometric functions).

Unit III 17Hrs

Integration : Arbitrary constant – Two general rules – Some standard results – Integration by Substitution – II – Integration by substitution – III – Standard results – Integration of rational function of the type – Integration by Partial fractions – Integration of the function of the type $1/((ax+b)\operatorname{sqrt}(lx^2+mx+n))$ – Integration by parts – Definite integral – properties of definite integrals – An Application of integration – Marginal cost – Total cost and average cost – Marginal revenue, Total revenue and Average revenue (Excluding Trigonometric functions).

Unit IV 17 Hrs

Linear Programming: Meaning and Formulation of LPP - Graphical Method - Simplex Method Transportation problem: Mathematical formulation of the problem - Initial Basic feasible solution (Matrix Minima Method - North — West Corner rule and VAM)- Simple problems only.

Unit V 18 Hrs

Assignment Problem: Introduction- Mathematical formulation of assignment problem-Assignment algorithm- unbalanced Assignment model- maximization case in assignment problems-Travelling Salesman Problem-Simple problems only.

Textbooks

S. No	Author	Title of the book	Publishers	Year of Publicati		
				on		
1.	P.R. Vittal	Business	Margham	2002		
		Mathematics and	Publications			
		Statistics				
	UNIT I: Chapter -6,7,8,9 &10					
	UNIT -II: Chapter -15 (Excluding Trigonometric functions)					
	UNIT -III: Chapter -16 (Excluding Trigonomet	ric functions)			
	V. Sunderesan,	Operations	A.R.	2005		
	K.S.	research	Publications,			
2.	GanapathySubramani		3rd Edition			
	am, K. Ganesan					
	UNIT IV: Chapter 2 Sec	tion: 2.1 -2.8, Chapter	- 3 : Section: 3.1.1 -3	.1.4 ,		

Chapter 5 - Section :5.1 UNIT V: Chapter 6 section 6.1,6.2,6.3,6.4,6.5,6.6, 6.7, 6.9

Reference Books

S. No	Author	Title of the book	Publishers	Year of Publicat ion
1.	P.A. Navnitham	Business Mathematics and Statistics	Jai Publishers, Trichy.	2003
2.	P. Rama Murthy	Operations research	New age international Publishers	2007
3.	Manmohan and Gupta P K	Operations Research	Sultan Chand & Sons	2011

MOOC learning

https://nptel.ac.in/courses/111/107/111107128/

(4 Lectures by Prof.Kusum Deep, Department of Mathematics, Indian Institution of Technology Roorkee)

Lecture 03 Graphical method

Lecture 05 Simplex method

Lecture 28 Transportation Problem

Lecture 29 Assignment Problem

Note

Question paper setters to confine to the above textbooks only

Pedagogy

Lecture by Chalk and talk, Power point presentation, E-content, Group discussion, Assignment, Quiz, Peer learning, Seminar.

- 1. Dr. R. Sakthikala, Assistant Professor, Department of Mathematics
- 2. Ms. S. Narmatha, Assistant Professor, Department of Mathematics

COURSE	COURSE NAME	CATEGORY	L	T	P	CREDI
CODE	ALLIED STATISTICS I					T
TH21A15	SEMESTER I	Theory	86	4	-	5

- To present students the Basic concepts of statistics in terms of theory and practical.
- To enable the students to find the practical applications to the real world problems using EXCEL.

Course Learning Outcomes

• Upon the successful completion of the course, students will be able to

CLO	CLO Statement	Knowledge
Number		Level
CLO1	Recall the basics concepts about collection and representation of data and Measures of central tendency	K1
CLO2	Perform statistical inference in several circumstances and interpret the results in an applied context.	K2
CLO3	Using Excel to gain proficiency skill for data analysis.	К3
CLO4	Distinguish types of studies and their limitations and strengths of Times Series and Index Numbers.	К3
CLO5	Analyse and evaluate the accuracy of common statistical methods.	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	M	S	M	S
CLO2	M	S	M	S	M
CLO3	S	M	S	M	S
CLO4	M	S	M	S	S
CLO5	S	S	S	M	S

S- Strong; M-Medium; L-Low

Syllabus

SEMESTER I ALLIED - STATISTICS I (For B COM BUSINESS ANALYTICS)

Credits: 5 Hours: 86

Subject Code: TH21A15

UNIT I 16 Hrs

Introduction-Meaning and objectives of Classification-Types of Classification-Formation of a discrete and continuous frequency Distribution-Tabulation of data- Parts of Table-General rules of tabulation- Types of tables. Diagrammatic and Graphic Presentation: Introduction-

Significance of diagrams and graphs- General rules for constructing Diagrams-Types of diagrams- Graphs- Graphs of frequency distributions. Introduction to statistical software (like Excel) and learning graphs and diagrams using Excel.

UNIT II 19 Hrs

Measures of central tendency: Introduction-Objectives of Averaging-Requisites of a good average- Types of Averages-Geometric Mean-Harmonic Mean- Relationship among the averages - Measures of dispersion: Significance of Measuring variation – Properties of good measures of variation-methods of studying variation. Simple problems related to above mentioned concepts using Excel.

UNIT III 17 Hrs

Skewness: Introduction - Tests of skewness - Measures of skewness- Correlation analysis: Introduction - Significance of the study of correlation - correlation and causation - Types of correlation - Methods of studying correlation - Graphic method - Karl Pearson's coefficient of correlation - Coefficient of correlation and probable error - Coefficient of determination - Properties of the coefficient of the correlation - Rank correlation coefficient - Features of Spearman's correlation coefficient - Regression analysis.(Verification by excel)

UNIT IV 17 Hrs

Analysis of time Series -Introduction - Utility of time series - Components of time series - Preliminary adjustments before analyzing time series - Measurement of trend - Free hand or graphic method - Method of semi averages - Moving average method - Measurement of seasonal variations - Method of simple averages only - Ratio-to-trend Method - Ratio-to - moving average method - Link relative method.

UNIT V 17 Hrs

Index Numbers: Introduction - Uses of index numbers - Classification of index numbers - Problems in construction of index numbers - Methods of constructing index numbers - Quantity of volume index numbers - Value index numbers - Tests of adequacy of index number formulae. Interpolation: Introduction - Significance of interpolation and extrapolation - Assumptions of interpolation and extrapolation - Methods of interpolation: Binomial expansion methods - Newton's method - Lagrange's method- Extrapolation

Text book

S.	Author	Title of the	Publishers	Year of			
No		book		Publication			
1.	S P Gupta	Statistical	Sultan Chand & Sons	2004			
		Methods	publishers				
	Unit I: Volume I: Chapter: 5, 6						
	Unit II: Volume I: Chapter: 7, 8.						
	UNIT III: Volume I: Chapter: 9 (Pg No.329-341) (till measures of skewness),10,11.						
	UNIT IV: Volume I: Chapter: 14 (Up to Link Relative Method)						
	UNIT V:Volun	ne I: Chapter: 13 & 15	•				

Reference Books

TTCTCT C	Reference Books							
S. No	Author	Title of the book	Publishers					
				Publication				
1.	P.A.	Business Mathematics and	Jai	2003				
	Navnitham	Statistics	Publishers,					
			Trichy.					
2.	V.K.Kapoor	Fundamentals of Applied	Sultan Chand	2007				
		Statistics	& Sons					

Digital Demonstration using Excel

https://www.vertex42.com/edu/charts-and-graphs-in-excel.html

> Graphs and charts

https://www.syncfusion.com/ebooks/statistics/descriptive-statistics

➤ Measures of central tendency, Measures of dispersion

https://www.excel-easy.com/examples/regression.html

➤ Regression

MOOC learning

https://www.youtube.com/watch?v=zlZaOnBbpUg

(1 lesson by Prof. Arunkanda, Department of Mechanical Engineering, IIT, Delhi)

• Lecture 35 - Analysis of Time Series

https://www.youtube.com/watch?v=JT9o8b43Gk0

• Index numbers

Note

• Question paper setters to confine to the above text books only

Pedagogy

Lecture by Chalk and talk, Power point presentation, E-content, Group discussion, Assignment, Quiz, Peer learning, Seminar.

- 1. Ms.M.Mohanapriya, Assistant Professor, Department of Mathematics
- 2. Dr. R. Sakthikala, Assistant Professor, Department of Mathematics

COURSE	COURSE NAME	CATEGORY	L	T	P	CREDIT
CODE TH21A02	ALLIED -MATHEMATICS FOR MANAGEMENT I SEMESTER I	THEORY	8 6	4	-	5

- To inspire the students to get the knowledge in basic mathematical concepts
- Introducing the need for mathematics to recognize appropriate investigate and interpretive procedures in management

Course Learning Outcomes

CLO	CLO Statement	Knowledge
Number		Level
CLO1	This will exhibit fundamental mathematical concepts and analysis of real-world problems to non-Mathematician	K1
CLO2	Apply mathematical results to find solutions in the real life like annuities and sampling theory	K2
CLO3	This will exhibit fundamental mathematical concepts and analysis of real-world problems to non-Mathematician	K2
CLO4	Develop the ability to formulate precise mathematical statements and essential skills that are progressively developed throughout the curriculum.	K3
CLO5	Connection between the key objectives main subject-specific areas and courses are indicated.	K4

Mapping with Programme Learning Outcomes

CLOs/PLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	S	S	M	S
CLO2	S	S	M	S	M
CLO3	S	S	S	S	S
CLO4	M	S	S	S	S
CLO5	S	S	S	M	S

S- Strong; M-Medium; L-Low

Syllabus

SEMESTER I ALLIED - MATHEMATICS FOR MANAGEMENT I (Common to BBA(Aided), BBA (IB & RM), BBA (BPM))

Credits:5 Hours 86

Subject Code: TH21A02

UNIT I 17 hrs

Arithmetic Progression-Geometric Progression-Matrices-Fundamental ideas about Matrices-operational Rules-Matrix Multiplication- Solving a system of linear equation by Cramer's rule and matrix inverse method, Inversion of Square Matrices of 3rd order, rank, simple problems.

UNIT II 17 hrs

Mathematics of Finance- Simple and Compound Interest, Depreciation, Annuities, Sinking Fund, Discount on Bills.

UNIT III 17 hrs

Meaning and scope, statistical survey, collection of data, classification and tabulation, diagrams and graphs. Introduction to statistical software (like Excel) and learning graphs and diagrams using Excel.

UNIT IV 17 hrs

Measure of central tendency, arithmetic mean, median and mode, geometric and harmonic mean. Measures of dispersion: Range, Quartile deviation, mean deviation, standard deviation, coefficient of variation. Correlation – rank correlation. Simple problems related to above mentioned concepts using Excel.

UNIT V 18 hrs

Analysis of Time Series: Components of Time Series- Secular Trend- Moving Average Method-Method of Least Squares- Seasonal Variation- Method of Simple Average. Index numbers: Weighted and unweighted indices, cost of living index.

Text Books

S. No	Author	Title of the book	Publishers	Year of Publication		
1.	P.R. Vittal	Business Mathematics and Statistics	Margham Publishers	2002		
	UNIT I: Ch-6 & UNIT II: Ch-8,9					
2.	P.A. Navnitham	Business Mathematics And Statistics	Jai Publishers	2003		
	UNIT I : Vol I Ch-4 sections :1,2,3,4,5,6,7,9,10 UNIT III : Vol II Ch-1-6 UNIT IV : Vol II Ch-7, 8. Ch-12: (pg 503-521) UNIT V : Vol II Ch-14 (pg no:579-601) Ch- 10 (444-471)					

Reference 1	Reference Books						
S.No.	Author	Title of Book	Publishers	Year of publication			
1	S.P .Gupta	Statistical Method	Sultan Chand Publications	2002			
2	Sundaresan, Jayaselan	An Introduction To Business Mathematics	Sultan Chand & Sons	2003			

MOOC learning

https://nptel.ac.in/courses/111/104/111104120/

Prof Shalabh, Department of Mathematics, IIT Kanpur

Lecture 14Airthmetic mean

Lecture 15 Median

Lecture 16 Ouartiles

Lecture 17 Mode Geometric mean

Lecture 20 Mean and standard deviation

Lecture 21 coefficient of variation

https://nptel.ac.in/courses/111/106/111106112/

Prof G. Srinivasan, Department of Mathematics, IIT Madras

Lecture 1: Introduction to probability and statistics

Lecture 2: Types of data

Lecture 4: Data and diagram

Note

Question paper setters to confine to the above text books only

Pedagogy

Chalk and talk, PPT, Group discussion, Seminar, Quiz, Assignment

- 1. Ms.S.Lakshmi, Assistant Professor, Department of Mathematics
- 2. Ms.J.Rejula Mercy, Assistant Professor, Department of Mathematics

COURSE	COURSE NAME	CATEGORY	L	T	P	CREDIT
CODE TH21A25	ALLIED - LINEAR ALGEBRA SEMESTER I	Theory	86	4	•	5

- To present students the Basic concepts of linear algebra.
- To enable the students to find the practical applications to the real world problems.

Course Learning Outcomes

Upon the successful completion of the course, students will be able to

CLO	CLO Statement	Knowledge
Number		Level
CLO1	Develop the use of matrix algebra techniques which is needed by engineers for practical applications	K1
CLO2	Apply the tools of vector spaces to decompose complex matrices into	K2
CLO3	Recognize and use basic properties of subspaces and vector spaces	К3
CLO4	Understand the concept of real and complex inner product spaces and their applications in constructing approximations and orthogonal projections	K3
CLO5	Compute Eigen values and Eigen vectors and use them to diagonalizable matrices and simplify representation of line at transformations	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	M	S	S	S	S
CLO2	S	S	M	S	S	S
CLO3	S	S	S	M	S	S
CLO4	S	S	S	S	M	S
CLO5	S	M	S	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

B.SC CS(AI) LINEAR ALGEBRA

UNIT I (17 hrs)

Linear Equations and Matrices: Systems of Linear Equations, Gaussian Elimination, Vector Arithmetic, Arithmetic of Matrices, Matrix Algebra, The Transpose and Inverse of a Matrix, Types of Solutions, The Inverse Matrix Method

UNIT II (17 hrs)

Euclidean Space: Properties of Vectors, Further Properties of Vectors, Linear Independence, Basis and Spanning Set

(17 hrs)

UNIT III

General Vector Spaces: Introduction to General Vector Spaces, Subspace of a Vector Space, Linear Independence and Basis, Dimension

UNIT IV (17 hrs)

Inner Product Spaces: Introduction to Inner Product Spaces, Inequalities and Orthogonality, Orthonormal Bases, Orthogonal Matrices

UNIT V (18 hrs)

Eigen values and Eigenvectors: Determinant of a Matrix, Introduction to Eigen values and Eigenvectors, Properties of Eigen values and Eigenvectors, Diagonalization, Diagonalization of Symmetric Matrices

Text Book

S. No	Author	Title of the	Publishers	Year of			
		book		Publication			
1.	Kuldeep Singh	Linear Algebra	Oxford University	2014			
		Step by Step	Press				
	Unit I: Chapter I			1			
	Unit II: Chapter II						
	Unit-III: Chapter III 3.1-3.4						
	Unit-IV: Chapter IV						
	Unit-V: Chapter V	I - 6.1, Chapter VII -7.1	1-7.4				

Reference Books

S.	Author	Title of the book	Publishers	Year of			
No				Publication			
1.	Gilbert Strang	Introduction to	Wellesley-	2016(5 th			
		Linear Algebra	Cambridge Press	Edition)			
2.	David C. Lay,	Linear Algebra and	earson Education	(2014)			
	Steven R. Lay,	Its Applications,					
	Judi J.						
	McDonald.						
3.	David C.	Linear Algebra and	Pearson	2014			
	Lay.Steven	Its Applications,		5 th			
	R.Lay.			Edition,			
	JudJ.McDonald						

Note

Question paper setters to confine to the above text books only

MOOC learning

https://nptel.ac.in/courses/111/106/111106051/#

Lecture 1: Systems of Linear Equations, Gaussian Elimination

Lecture 2: Introduction to General Vector Spaces, Subspace of a Vector Space

Lecture 3: Linear Independence, Basis and Spanning Set

Lecture 9: Introduction to Inner Product Spaces, Inequalities and Orthogonality

Lecture 6: Introduction to Eigenvalues and Eigenvectors, Properties of Eigenvalues and

Eigenvectors, Diagonalization, Diagonalization of Symmetric Matrices

Pedagogy

Chalk and talk, ppt, Group discussion, Seminar, Quiz, Assignment

- 1. Dr. C.R. Parvathy, Associate Professor, Department of Mathematics
- 2. Mrs. R. Meenambigai, Assistant Professor, Department of Mathematics

COURSE	COURSE NAME	CATEGORY	L	T	P	CREDIT
CODE TH21A06	ALLIED DISCRETE MATHEMATICS SEMESTER II	Theory	86	4	-	5

• Principle of Mathematical Structures which are essential and related to the concepts of Computer Science. This helps the students to approach any Mathematical Problem which arise in the field of Computer Science

Course Learning Outcomes

Upon the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Identify Mathematical logic and definitions and well-formed formula and Outline the understanding of Tautology and Equality relations thereby helps students to understand ambiguity and disagreement in real world problems	K1
CLO2	Lattices and Boolean algebras enables one to understand applications in logic, circuit theory, and probability	K2
CLO3	Demonstrate the importance of Graph Theory in Computer Science	К3
CLO4	Apply and Demonstrate algebraic concepts in Coding theory using group codes enhances their ability to detect and correct errors	К3
CLO5	Analyze if a given graph is simple or a multigraph, directed or undirected, cyclic or acyclic, and determine the connectivity of a graph	K4

Mapping with Programme Learning Outcomes

CLOs/PL Os	PLO1	PL O2	PL O3	PL O4	PL O5
CLO1	S	S	S	S	M
CLO2	S	S	S	M	S
CLO3	S	S	S	S	S
CLO4	M	S	M	S	S
CLO5	S	S	S	S	S

S- Strong; M-Medium; L-Low

SEMESTER – II ALLIED - DISCRETE MATHEMATICS

Common to B.SC (CS), B.SC (CS with Cognitive Systems), BCA, B.SC (IT)
Credits 5

Hours 86

Subject Code : TH21A06

Unit I 17 Hrs

Mathematical Logic: Connectives—Statement Formulas and Truth Tables - Conditional and Biconditional - Well formed Formulas - Tautologies - Equivalence of Formulas -Duality law -Tautological implications -Normal forms —Theory of inference for the Statement Calculus - Predicate Calculus.

Unit II 17 Hrs

Coding Theory: Introduction – Hamming distance – Encoding a message – Group codes – Procedure for generating Group Codes – Decoding and Error Correction – An example of a Simple error correcting code.

Unit III 17 Hrs

Formal languages and Automata: Grammar and Languages -Phrase Structure grammar – Types of Phrase Structure Grammar – Backus-Naur form [BNF] - Finite State Acceptors and Regular Grammars: Deterministic finite automata-Non-Deterministic finite-State automata-Conversion of Non-Deterministic finite automata to finite state automata.

Unit IV 19 Hrs

Lattice and Boolean Algebra: Lattices as Partial ordering set – Some Properties of Lattices- Distributive lattices-Complemented Distributive Lattices-Boolean algebra – Boolean Function – Representation and Minimization of Boolean function using K-Map.

Unit V 16 Hrs

Graph Theory: Basic Concepts of Graph Theory – Path, Reachability and Connectedness – Circuits-Hamiltonian Paths- Euler paths-Matrix representation-Incidence matrix-Adjacency matrix-Tree and Binary tree – Theorems-Statement only(No Proof).

	Author	Title of the	Dublishous	Year of			
S.	Author	Title of the	Publishers				
No		book		Publicatio			
				n			
1.	J.P.Tremblay	Discrete	McGraw Hill	Edition			
	and R.Manohar	Mathematical	Publishing	1997,			
		Structures with	Company	Reprint			
		Applications to		2008			
		Computer					
		Science					
	Unit I: Section: 1.2.1 -1.2.4, 1.2.6 -1.2.11, 1.3.1 -1.3.4, 1.4.1 - 1.4.2, 1.5.1 -						
	1.5.4						
	Unit III: Section: 3	.3.1 -3.3.3, 6.1.1					
	Unit IV: Section: 4	.1.1 -4.3.1 ,4.4.1, 4.4.2	2				

Unit V: Section: 5.1.1 -5.2.2

2.	Dr. M.K.	Discrete	The National	First edition
	Venkataraman,	Mathematics	Publishing	Reprint 2003,
	Dr. N. Sridharan		company,	
	and		Chennai	
	N. Chandrasekaran			
	Unit II: Chapter 8	Sections $8.1 - 8.7$		

Reference books

S.NO	Author	Title of the book	Publishers	Year of
				publication
1	T.Veerarajan	Discrete Mathematics with	Tata mcgraw-	2008
		Graph Theory and	Hill	
		Combinatorics	publishing	
			company	
			Limited	
2	NarSinghDeo	Graph Theory with	PHI, India	2006
		Applications to Engineering		
		and Computer Science		
3	T. Santha and	Discrete Mathematics for	Kalaikathir	2002
	P. Radha	Computer Science and	Publications	
	i . Nauna	Applications		

MOOC learning

https://nptel.ac.in/courses/111/107/111107058/

(Lectures by Dr.AditiGangopadhyay, Dr.SugataGangopadhyay and Dr.TanujaSrivastava,

Department of Mathematics, IIT Roorkee)

Lecture 06 Logical Inferences

Lecture 32 Lattices

Lecture 33 Boolean algebra

Lecture 17 Basic definition

Lecture 18 Isomorphism and sub graphs

Lecture 19 Walks, paths and circuits operations on graphs

Lecture 20 Euler graphs, Hamiltonian circuits

Note

Question paper setters to confine to the above text books only

Pedagogy

Chalk and talk, Powerpoint Presentation, E-Content, Group discussion, Seminar, Quiz, Assignment and Peer learning

- 1. Ms.S.Sreeja, Assistant Professor, Department of Mathematics
- 2. Ms.S.Deepa, Assistant Professor, Department of Mathematics

COURSE	COURSE NAME	CATEGORY	L	T	P	CREDIT
CODE TH21A08	ALLIED STATISTICS FOR COMMERCE SEMESTER II	Theory	8 6	4	-	5

- To present students the Basic concepts of statistics.
- To enable the students to find the practical applications to the real world problems.

Course Learning Outcomes

Upon the successful completion of the course, students will be able to

CLO Numbe r	CLO Statement	Knowledge Level
CLO1	Indicate the strength and direction of a <i>linear</i> relationship between two variables, <i>regression and time series</i> .	K1
CLO2	Construct simple price, quantity, and value indexes.	K2
CLO3	Understand the concepts of a random variable and a probability distribution.	K2
CLO4	To measure progress toward quality improvement and public health <i>goals</i> .	K3
CLO5	Hypothesize various advanced statistical techniques for exploring practical situations.	K4

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	M	S	M	S
CLO2	M	S	M	S	M
CLO3	S	M	S	M	S
CLO4	M	S	M	S	S
CLO5	S	S	S	M	S

S- Strong; M-Medium; L-Low

Syllabus

SEMESTER II/IV

Allied - Statistics for Commerce COMMON TO B.COM(Aided & SF) - SEMESTER IV AND B.COM (CA, E-COM, FS, A&F) - SEMESTER II

Credits 5 Hours 86

Subject Code: TH21A08

UNIT I 16Hrs

Correlation analysis: Introduction - Significance of the study of correlation - correlation and causation - Types of correlation - Methods of studying correlation - Graphic method - Karl Pearson's coefficient of correlation - Coefficient of correlation and probable error -Regression analysis. Analysis of time Series: Introduction - Utility of time series - Components of time series - Preliminary adjustments before analysing time series - Measurement of trend - Free hand graphic method - Method of semi averages - Moving average method - Measurement of seasonal variations - Method of simple averages - ratio to moving average — link relative method.

UNIT II 19 Hrs

Index Numbers: Introduction - Uses of index numbers - Classification of index numbers - problems in construction of index numbers - Methods of constructing index numbers - Quantity or volume index numbers - Value index numbers - Tests of adequacy of index number formulae- Consumer price index numbers-meaning and need-method of constructing the index-Index number of industrial production.

UNIT III 17 Hrs

Concepts of probability- Addition theorem-Multiplicative theorem – Conditional probability-Bayes theorem-Mathematical Expectation-Theoretical distributions-Binomial Distribution -Poisson distribution -Normal distribution.

UNIT IV 17 Hrs

Statistical Inference-Tests of hypothesis-Introduction—Procedure-Types of errors-Two-tailed and one-tailed tests of hypothesis-standard error and sampling distribution-Tests of significance for large samples-Difference between small and large samples- Two tailed test and standard error of the difference between small and large samples-chi-square test and goodness of fit.

UNIT V 17 Hrs

Vital Statistics-Definition-Utility of vital statistics-Measures of population and Vital statistics-Introduction-Measures of population - Measures of vital statistics - Mortality Rates - Fertility Rates.

Text Books

S.	Author	Title of the	Publishers		Year of
No		book			Publication
1.	S P Gupta	Statistical	Sultan Chand &Sons		2004
		Methods	publishers		
	Unit I:Volum	e I: Chapter: 10,11,14	4.		
	Unit II: Volur	ne I: Chapter: 13			
	Unit III: Volu	ne II: Chapter: 1&2			
	Unit IV: Volui	me II: Chapter:3&4.			
2.	Veer	Biostatistics	MEDTEC	2015	
	BalaRast	Third Revised	Н		
	ogi Edition				
	Unit V: Chapter20; Sections:20.2, 20.2.1.,20.2.2.				
	Chapt	er21:21.1, 21.2, 21.2.	1, 21.3,21.4,21.5		

Reference Books

S.	Author	Title of the book	Publishers	Year of
No				Publication
1.	P.A.	Business Mathematics and	Jai	2003
	Navnitham	Statistics	Publishers,	
			Trichy.	
2.	V.K.Kapoor	Fundamentals of Applied	ultan Chand &	2007
		Statistics	Sons	
3.	P.N.ARORA	Comprehensive Statistical	ultan Chand &	2008
	SUMEET	Methods	Sons	
	ARORA,			
	S.ARORA			

MOOC learning

https://www.youtube.com/watch?v=zlZaOnBbpUg

(1 lesson by Prof. Arunkanda, Department of Mechanical Engineering, IIT, Delhi)

Lecture 35 - Analysis of Time Series

https://www.youtube.com/watch?v=JT9o8b43Gk0

Index numbers

https://nptel.ac.in/courses/102106051/

26 Lessons by Prof.MukeshDoble, IIT Madras

Lecture 1 – Introduction

Lecture 2 – Binomial Distribution

Lecture 3 – Poisson Distribution

Lecture 4 – Normal Distribution

Lecture 5-10 – T- test

Lecture 22-24 – Chi-Square test

Note

Question paper setters to confine to the above text books only

Pedagogy

Chalk and talk, PPT, Group discussion, Seminar, Quiz, Assignment

- 1. Ms.M.Deepa, Assistant Professor, Department of Mathematics
- 2. Ms.S.Narmatha, Assistant Professor, Department of Mathematics

COURSE	COURSE NAME	CATEGORY	L	T	P	CREDIT
CODE TH21A16	ALLIED STATISTICS II SEMESTER II	ALLIED	86	4	-	5

- To provide the use of mathematical process skills to identify, pose and solve problems creatively, critically and practically
- To make students to understand statistical principles with theoretical concepts and problems.
- To provide the wide knowledge of real time applications and to clear the competitive exams.

Course Learning Outcomes

Upon the successful completion of the course, students will be able to

CLO	CLO Statement	Knowledge
Number		Level
CLO1	Recall basic concepts of data description and its representation and understand the basic principles of	K1
	probability and sampling theory	
CLO2	Understand the logic and framework of the inference of	K2
	hypothesis testing.	112
CLO3	Formulate and apply small samples, large sample and non-	K3
	parametric tests in real life problems.	
CLO4	Apply probability as a tool for anticipating the distribution of	К3
	data and using appropriate method to draw conclusions.	KJ
CLO5	Interpret and evaluate results correctly in experimental design	K4
	and draw reasonable conclusions	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	S	M	S	S
CLO2	S	S	M	S	S
CLO3	S	S	M	S	S
CLO4	S	S	S	S	S
CLO5	S	S	M	S	S

S- Strong; M-Medium; L-Low

Syllabus

SEMESTER II ALLIED – STATISTICS II (FOR B COM (BUSINESS ANALYTICS))

Credits: 5 Total Hours: 86

Subject Code: TH21A16

Unit I 17 Hrs

Brief History- meaning & Usefulness-Mathematical properties- permutation & Combination-Trail, event- sample space-mutually exclusive cases- exhaustive events-independent events-dependent events, simple and compound events- measurement-classical, relative frequency – theory of probability-limitations- personalistic view of probability and axiomatic approach of probability- addition and multiplication theorems.

Unit II 17Hrs

Theoretical Distributions: Binomial Distributions - Poisson Distributions - Normal Distributions.

UNIT III 18 Hrs

Tests of hypotheses- Introduction- Standard error and Sampling Distribution-Estimation-Test of significance for large samples- Test of significance for small samples: Students t distribution- chi-square test and goodness of fit (Except Yates correction). Simple problems using SPSS.

UNIT IV 17 Hrs

F test – Analysis of variance: One-way classification-two-way classification. Simple problems using SPSS.

UNIT V 17 Hrs

Experimental Design- Introduction-Randomized Block Design-Latin Squares-Randomized Blocks Vs Latin Squares-Latin cubes.

Text Books

S. No	Author	Title of the book	Publishers	Year of Publication			
•	R .S .N.	Statistics	S. Chand & company	2001			
	Pillai,		Ltd.				
	V.						
	Bagavathi						
	Unit I: Chapter: 18						
	Unit II: Chapter: 19						
2.	S P Gupta	Statistical	Sultan Chand & Sons	2004			
	_	Methods	publishers				
	UNIT III : Volume II: Chapter: 3&4.						
	UNIT IV : Volume II: Chapter: 5.						
	UNIT V: Volui	me II: Chapter: 6.					

Reference Books

Hold once Books							
S.	Author	Title of the book	Publishers	Year of			
No				Publication			
1.	S.C. Gupta	Fundamentals of	Sultan Chand	2002			
		Mathematical Statistics	& Sons				

			publishers.	
2.	EelkoHuizingh	Applied Statistics with SPSS	Sage Publications	2007
		2F22	Publications	

Digital Demonstration using SPSS

https://academic.udayton.edu/gregelvers/psy216/spss/ttests.htm

> t test

https://statistics.laerd.com/spss-tutorials/one-way-anova-using-spss-statistics.php

➤ One way ANOVA

https://statistics.laerd.com/spss-tutorials/two-way-anova-using-spss-statistics.php

> Two way ANOVA

MOOC learning

https://nptel.ac.in/courses/102106051/

(26 Lessons by Prof.MukeshDoble, IIT Madras)

- Lecture 1 Introduction
- Lecture 2 Binomial Distribution
- Lecture 3 Poisson Distribution
- Lecture 4 Normal Distribution
- Lecture 5-10 T- test
- Lecture 11-13 F test
- Lecture 14-20 ANOVA
- Lecture 22-24 Chi-Square test
- Lecture 32- Design of Experiments (Introduction)

Note

Question paper setters to confine to the above text books only

Pedagnox

Lecture by Chalk and talk, Power point presentation, E-content, Group discussion, Assignment, Quiz, Peer learning, Seminar.

- 1. Ms. M. Mohanapriya, Assistant Professor, Department of Mathematics
- 2. Dr. R. Sakthikala, Assistant Professor, Department of Mathematics

COURSE	COURSE NAME	CATEGORY	L	T	P	CREDIT
CODE TH21A24	MATHEMATICS FOR MANAGEMENT II SEMESTER II	Theory	8 6	4	-	5

• To impart the students with knowledge in basic mathematical concepts.

Course Learning Outcomes

Upon the successful completion of the course, students will be able to

CLO	CLO Statement	Knowledge
Number		Level
CLO1	Understand the basic concepts and application of operation research in various fields.	K1,K2
CLO2	Understand and applying the managerial problems in industry so that they are able to use resources (capitals, materials, staffing, and machines) more effectively.	K2,K3
CLO3	Formulate and solve the transportation problems using both manual methods and interpret the solutions.	K3,K4
CLO4	Illustrate the theoretical framework to conceive social situations among competing players and produce optimal decision-making of independent and competing actors in a strategic setting.	K3
CLO5	Discuss the powerful coordinating tool for planning, scheduling and controlling of projects and minimization of total project cost and time.	K3,K4

Mapping with Programme Learning Outcomes

CLOs/PLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	S	S	M	S
CLO2	S	S	M	S	M
CLO3	S	S	S	S	S
CLO4	S	M	S	S	S
CLO5	S	S	S	M	S

S- Strong; M-Medium; L-Low

Syllabus

SEMESTER II MATHEMATICS FOR MANAGEMENT II Common to BBA (Aided), BBA (IB & RM), BBA (BPM)

Credits 5 Hours 86

Subject Code: TH21A24

UNIT I 17 Hrs

Introduction to operation research: Meaning and Objective of OR – Scope of OR in Retail Business – Models in OR – Characteristics – Benefits – Limitations.

UNIT II 17 Hrs

Linear Programming: Meaning and Formulation of LPP - Graphical Method - Simplex Method.

UNIT III 17 Hrs

Transportation problem: Mathematical formulation of the problem - Initial Basic feasible solution (Matrix Minima Method - North — West Corner rule and VAM) - Moving towards optimality - Assignment problem -Travelling salesmen problem.

UNIT IV 17 Hrs

Game Theory: Useful Terminology - Rules for Game Theory - Pure Strategy - Mixed Strategy (2x2 games, 2 x n games or m x 2 games) - dominance property.

UNIT V 19 Hrs

Network Analysis: Network (Arrow diagram) Logic - Critical Path Method (CPM) - Programme Evaluation and Review Technique (PERT).

Text book

S. No	Author	Title of the book	Publishers	Year of Publication			
1.	V.Sunderesan K.S.Ganapathy Subramaniam, K.Ganesan	Operations research	A.R.Publications, 3rd Edition	2005			
	UNIT I: Chapter 1 sections 1.1 - 1.9 UNIT II: Chapter 2 sections 2.1- 2.8 Chapter 3 sections 3.1.1 - 3.1.4. UNIT III: Chapter 5 sections 5.1 - 5.5 Chapter 6 sections 6.1 - 6.9 UNIT IV: Chapter 13 sections 13.1 - 13.7 UNIT V: Chapter 8 sections 8.1-8.7						

Reference Books

S. No	Author	Title of the book	Publishers	Year of
				Publication
1.	S.Kalavathy	Operations Research	Vikas	2008
			publishing	
			house	
2	D.S.Cheema	Operations Research	LaxmiPublicat	2010
			ons	
3	Prem Kumar	Operations Research	S.Chand	2004
	gupta			
4	Michael	Operations Research	Crp press	2008
	W.carter			

MOOC learning

https://nptel.ac.in/courses/111/107/111107128/

Prof Kusum Deep, Department of Mathematics, IIT Roorkee

Lecture 1: Introduction to OR model

Lecture 3: Graphical method for Linear programming problem

Lecture 15: Simplex method Lecture 8: Unbounded solution Lecture 7: Multiple solution

https://nptel.ac.in/courses/112/106/112106134/

Prof G. Srinivasan ,Department of Management Studies, IIT Madras

Lecture 1: Introduction to LPP
Lecture 13: Transportation problem
Lecture 16: Assignment problem
Lecture 17: Hungarian method.

Note

Question paper setters to confine to the above text books only

Pedagogy

Chalk and talk, PPT, Group discussion, Seminar, Quiz, Assignment

Course Designers

1.Ms.S.Lakshmi, Assistant Professor, Department of Mathematics

2.Dr.C.R.Parvathy, Associate Professor, Department of Mathematics

COUDGE	COURSE NAME	CATEGORY	L	T	P	CREDIT
COURSE CODE TH21A26	ALLIED – STATISTICS FOR COMPUTER SCIENCE I SEMESTER II	Theory	86	4	-	5

• This course introduces the fundamental concepts of probability and random variables .It also provides knowledge in discrete and continuous distributions. It deals with various sampling distributions like t, F, chi-square distributions etc.

Course Learning Outcomes

Upon the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Demonstrate the basic concepts of statistics	K1
CLO2	Identify the methods for different measures of central tendency, dispersion	K2
CLO3	Indicate the strength and direction of a <i>linear</i> relationship between two variables, <i>regression and time series</i> .	К3
CLO4	Demonstrate advanced understanding of the concepts of time series	K3
CLO5	Construct simple price, quantity, and value indexes.	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	S	M	S	S	S	S
CLO2	S	S	M	S	S	S
CLO3	S	S	S	M	S	S
CLO4	S	S	S	S	M	S
CLO5	S	M	S	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

BSC CS(AI) STATISTICS FOR COMPUTER SCIENCE I

UNIT I 16 hrs

Introduction-Meaning and objectives of classification-Types of classification-Formation of a discrete and continuous frequency distribution-Tabulation of data- Parts of table- General rules of tabulation- Types of tables. Diagrams and graphs. Introduction to statistical software (like Excel) and learning graphs and diagrams using Excel.

UNIT II 19 hrs

Measures of location or central tendency: Arithmetic mean, Median, Mode, Geometric mean, Harmonic mean. Partition values: Quartiles, Deciles and percentiles. Measures of dispersion: Mean deviation, Quartile deviation, Standard deviation, Coefficient of variation. Moments: measures of skewness, Kurtosis.

UNIT III 17 hrs

Correlation analysis: Introduction - Significance of the study of correlation - correlation and causation - Types of correlation - Methods of studying correlation - Graphic method - Karl Pearson's coefficient of correlation - Coefficient of correlation and probable error - Coefficient of determination - Properties of the coefficient of the correlation - Rank correlation coefficient - Features of Spearman's correlation coefficient, Regression analysis.

UNIT IV 17 hrs

Analysis of time Series -Introduction - Utility of time series - Components of time series - Preliminary adjustments before analyzing time series - Measurement of trend - Free hand graphic method - Method of semi averages - Moving average method - Measurement of seasonal variations - Method of simple averages only - Ratio-to-trend Method - Ratio-to - moving average method - Link relative method.

UNIT V 17 hrs

Index Numbers: Introduction - Uses of index numbers - Classification of index numbers - Problems in construction of index numbers - Methods of constructing index numbers - Quantity of volume index numbers - Value index numbers - Tests of adequacy of index number formulae. Interpolation: Introduction - Significance of interpolation and extrapolation - Extrapolation - Assumptions of interpolation and extrapolation - Methods of interpolation - Binomial expansion methods - Newton's method - Lagrange's method.

Text Book

S.	Author	Title of the	Publishers	Year of		
No		book		Publication		
1.	S P Gupta	Statistical	Sultan Chand	2004		
		Methods	&Sons publishers			
	Unit I: Volume I: Chapter: 1					
	Unit II: Volume I: Chapter: 2					
	Unit III:Volume I: Chapter10,11					
	Unit IV: Volume I:Chapter 14					
	Unit-V : Volur	ne I: Chapter 13				

Reference Books

S. No	Author	Title of the book	Publishers	Year of Publication
1.	P.N.Arora SumeetArora, S.Arora	Comprehensive Statistical Methods	ultan Chand & Sons	2008
2.	David Lane,	Introduction to Statistics	avid Lane	2003
3.	Krishnan Vijaya	Statistics for Beginners	Atlantic Publishers & Distributors Pvt Ltd	2011
4.	S.C Gupta and V.K. Kapoor	Fundamentals of Mathematical Statistics	ultan Chand & Sons Publications	2001

Note

Question paper setters to confine to the above text books only

MOOC learning

https://nptel.ac.in/courses/110/107/110107114/

Lecture 1: Introduction-Meaning and objectives of classification, Diagrams and graphs

Lecture 2: Measures of location or central tendency

https://nptel.ac.in/courses/111/105/111105042/

Lecture 1: Regression analysis

https://www.youtube.com/watch?v=_WM8vzYSQhs

Module 1: Lecture 39: Regression Analysis and Correlation

https://www.youtube.com/watch?v=zlZaOnBbpUg

(Lesson by Prof. Arunkanda, Department of Mechanical Engineering, IIT, Delhi)

Lecture 35 - Analysis of Time Series

https://www.youtube.com/watch?v=JT9o8b43Gk0

Index numbers

https://nptel.ac.in/courses/102106051/

Pedagogy

Chalk and talk, ppt, Group discussion, Seminar, Quiz, Assignment

- 1. Dr.C.R.Parvathy, Associate Professor, Department of Mathematics
- 2. Mrs.R.Meenambigai, Assistant Professor, Department of Mathematics

COURSE	COURSE NAME	CATEGORY	L	T	P	CREDIT
CODE	ALLIED-OPTIMIZATION					
TH21A13	TECHNIQUES	Allied	86	4	-	5
	SEMESTER III					

- ➤ To introduce the fundamental concepts of Optimization Techniques
- > To make the learners aware of the importance of optimizations in real scenarios
- ➤ To learn about the managerial concepts like decision making, optimization etc.

Course Learning Outcomes

Upon the successful completion of the course, students will be able to

CLO	CLO Statement	Knowledge
Number		Level
CLO1	Recall the basic concepts and application of operation research in various fields.	K1
CLO2	Understanding various concepts such as LPP, assignment, transportation, travelling salesman, networking etc through algorithms and problems.	К2
CLO3	Applying the importance, value of Operations Research and its mathematical modeling for solving practical problems occurring in real world	К3
CLO4	Analyzing different situations in the industrial/ business scenario involving limited resources and finding the optimal solution within constraints.	K4

Mapping with Programme Learning Outcomes

CLOs/ POs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	M	S	S	S
CLO2	S	S	M	S	S
CLO3	S	S	S	S	M
CLO4	S	S	S	S	S

S-Strong; M-Medium; L-Low

COMMON TO B.Sc (CS/IT), B.Sc (CS with Cognitive systems) & BCA ALLIED-OPTIMIZATION TECHNIQUES

UNIT I 16 hrs

Linear programming: Introduction-Mathematical formulation of the problem- Graphical solution —**General LPP – Canonical & standard forms of LPP** - Simplex method- Big- M method.

UNIT II 17 hrs

Transportation problem: Mathematical formulation of the problem-Initial Basic feasible solution (**Matrix Minima Method - North – West Corner rule** and VAM) – Moving towards optimality- Assignment problem- Travelling salesman.

UNIT III 18 hrs

Game theory: Concept of pure and mixed strategies - Solving 2×2 matrix with and without saddle point- Graphical method for $2x \times n - m \times 2$ games - Matrix oddment method. Dominance property.

UNIT IV 18 hrs

Queuing theory: **Problems from single server, finite** and infinite population. (Derivations not included). Sequencing Problems: Problems with N Jobs through 2 Machines - Problems with N Jobs through 3 Machines.

UNIT V 17 hrs

Network scheduling by PERT / CPM: Introduction - basic terminologies - rules for constructing a project network-critical path method-floats -PERT-Cost considerations in PERT and CPM Crashing.

Text Book

S. No	Author	Title of the book	Publishers	Year of Publication			
1.	V.Sunderesan, K.S.Ganapathy Subramaniam, K.Ganesan	Operations research	A.R.Publications, 3 rd Edition	2005			
UNIT I: Chapter 2 session 2.1-2.8, Chapter-3 :session: 3.1.1 -3.1.4,3.2,3.2.1 UNIT II: Chapter 5 session 5.1 -5.5, Chapter-6 :session 6.1-6.9 UNIT III: Chapter 13 session 13.1-13.5, 13.7. UNIT IV: Chapter 11 section11.1– 11.6(exclude 11.5) Chapter14 section14.1-14.4 UNITV: Chapter 8 session 8.1 -8.8							

Reference Books

S. No	Author	Title of the book	Publishers	Year of Publication
1.	Billy E.Gillett	Introduction to Operations Research	Tata McGraw - Hill	2001
2	Kalavathy.S	Operations Research	Vikas publishing house	2008
3	Kanti Swarup Etal	Operations Research	Sultan Chand & Sons	2009
4	Manmohan and Gupta PK	Operations Research	Sultan Chand & Sons	2011
5	D.S.Cheema	Operations Research	Laxmi Publicatons	2010

MOOC learning

https://nptel.ac.in/courses/111/107/111107128/

(Lectures by Prof. Kusum Deep, IIT Roorkee)

Graphical Method for LPP

Simplex Method

- Big M Method
- Transportation Problem
- Assignment Problem
- Processing n Jobs on Two Machines
- Processing n Jobs through Three Machines
- Two Person Zero-Sum Game
- Solution of Mixed Strategy Games

E- Content

- 1) Standard and Canonical form: https://www.youtube.com/watch?v=-1jpfY0zA7s
- 2) Transportation problems: https://www.youtube.com/watch?v=ItOuvM2KmD4
- 3) Game theory: https://www.youtube.com/watch?v=fSuqTgnCVRg
- 4) Queuing theory: https://www.youtube.com/watch?v=xGkpXk-AnWU
- 5) Networking: https://www.youtube.com/watch?v=KG5b0xZ_Ba8

Pedagogy:

Chalk and talk, PPT, Group discussion, Seminar, Quiz, Assignment

- 2. Dr. R. Sakthikala, Assistant Professor, Department of Mathematics.
- 3. Mrs. M. Mohanapriya, Assistant Professor, Department of Mathematics.

COURSE	COURSE NAME ALLIED STATISTICS FOR	CATEGORY	L	T	P	CREDIT
CODE TH21A28	BIOTECHNOLOGY SEMESTER III	ALLIED	86	4	•	5

- To present students the Basic concepts of statistics in terms of theory and practical.
- To enable the students to find the practical applications to the real world problems using EXCEL.

Course Learning Outcomes

Upon the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Outlining the basics of statistics	K1
CLO2	Understand the formulas and solving problems.	K2
CLO3	Apply the concepts to solve statistical problems	K3
CLO4	Analyze and evaluate the accuracy of common Statistical methods or model in terms of excel.	K4

Mapping with Programme Learning Outcomes

COS/POS	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	M	S	M	S
CLO2	M	S	M	S	M
CLO3	S	M	S	M	S
CLO4	M	S	M	S	S

S- Strong; M-Medium; L-Low

Syllabus

SEMESTER III

STATISTICS FOR BIOTECHNOLOGY

Credit: 5 Total Hrs: 86

Subject Code: TH21A28

Unit I (17Hrs)

Functions of Statistics - Scope and Limitations. Classification & Tabulation of data - **Diagrammatic and Graphical Presentation of data.**

Diagrammatic representation of Data – Using Excel

Unit II (17Hrs)

Measures of Central tendency - Arithmetic Mean, Median, Mode, Geometric mean and Harmonic mean.

Problems Using Excel

Unit III (17 Hrs)

Measures of dispersion: Range, Quartile deviation, mean deviation, standard deviation, and coefficient of variation. Simple problems related to above mentioned concepts using Excel.

Unit IV (18 Hrs)

Skewness - **Correlation analysis**: Introduction - Significance of the study of correlation-correlation and causation - Types of correlation - Methods of studying correlation - Graphic method - Karl Pearson's coefficient of correlation - Coefficient of correlation and probable error - Coefficient of determination - Properties of the coefficient of the correlation - Rank correlation coefficient - Features of Spearman's correlation coefficient.

Problems Using Excel

Unit V (17 Hrs)

Regression Analysis-introduction-uses-Regression lines-Regression Equations Simple linear regression model and coefficients of regression.

Problems Using Excel

Text Book

S. No	Author	Title of the book	Publishers	Year of
				Publication
1.	S P Gupta	Statistical Methods	Sultan Chand &	2004
		Unit I:Chapter 1 pgNo 11-20,	Sons publishers	
		Chapter5 pgNo 92-109, Chapter 6 pg		
		No. 128-145,146-153,165-176		
		Unit II:Chapter 7 pg No.179-		
		204,211-218,222-225,232-235		
		Unit III:Chapter 8 Pg No. 275-302		
		Unit IV: Chapter 9 & 10 Pg No. 340-		
		342,390-416		
		Unit V: Chapter 11 Pg No.451-458		

Reference Books							
S. No	Author	Title of the book	Publishers	Year of			
				Publication			
1.	P.A. Navnitham	Business Mathematics and	Jai Publishers,	2003			
		Statistics	Trichy.				
2.	V.K.Kapoor	Fundamentals of Applied Statistics	Sultan Chand &	2007			
			Sons				

MOOC learning

https://www.vertex42.com/edu/charts-and-graphs-in-excel.html

Graphs and charts

https://www.syncfusion.com/ebooks/statistics/descriptive-statistics

➤ Measures of central tendency, Measures of dispersion https://www.excel-easy.com/examples/regression.html

> Regression

E - Content

Diagrammatic and Graphical Method: https://www.youtube.com/watch?v=cOuUsZ9yNyk

Measures of Central tendency: https://youtu.be/XrGM0OANzaE

Standard Deviation :https://youtu.be/O48XEfedSWs

https://youtu.be/1VBjTw3A56M https://youtu.be/IEVHpXn-5dU

Quartile Deviation
Mean Deviation
Range
Correlation

:https://youtu.be/C1gjdiCxQ2s
:https://youtu.be/5TJ52gAjzOI
:https://youtu.be/7gRphRBstB0
:https://youtu.be/ai0ao7h0BWY

https://youtu.be/CW8KthnL988 https://youtu.be/Xg0BJBwM2eQ https://youtu.be/iJcO1ZzX-Qo https://youtu.be/F_2GIheAbtI

Regression : https://youtu.be/i9zsF-JoYK0

https://youtu.be/xcUhf0Jqlek https://youtu.be/pT8M17HUh8c

Note

Question paper setters to confine to the above text books only

Pedagogy

Lecture by Chalk and talk, Power point presentation, E-content, Group discussion, Assignment, Quiz, Peer learning, Seminar.

- 1. Dr. C. R. Parvathy, Associate Professor, Department of Mathematics
- 2. Mrs. S. Deepa, Assistant Professor, Department of Mathematics

COURGE	COURSE NAME	CATEGORY	L	T	P	CREDIT
COURSE CODE TH21A30	ALLIED - ADVANCED STATISTICS FOR BIOTECHNOLOGY SEMESTER IV	THEORY	86	4	-	5

- To present students the Statistical concepts in analysing, interpreting terms of theory and practical.
- To enable the students to find the practical applications to a real-Life problem in various research fields using EXCEL.

Course Learning Outcomes

Upon the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Outlining the Statistics Concepts	K1
CLO2	Understand the formulas and solving problems.	K2
CLO3	Apply the concepts to solve statistical problems	К3
CLO4	Analyze and evaluate the accuracy of common Statistical methods or model in terms of excel.	K4

Mapping with Programme Learning Outcomes

CLOS/PLOS	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	M	S	M	S
CLO2	M	S	M	S	M
CLO3	S	M	S	M	S
CLO4	M	S	M	S	S

S- Strong; M-Medium; L-Low

Syllabus

SEMESTER IV ADVANCED STATISTICS FOR BIOTECHNOLOGY

Credit: 5 Total Hrs: 86

Subject Code: TH21A30

UNIT I 18Hrs

Tests of Hypothesis-Introduction—Procedure-Two Types of errors in testing of Hypothesis-Two-tailed and one-tailed tests of Hypothesis-Tests of significance for large Samples-Difference between small and large samples- Two tailed test for difference between the means of two samples-standard error of the difference between two standard deviations.

UNIT II 17Hrs

Tests of significance for small samples-student's t-Distribution properties of t-distribution- the t-table. Chi-square test and goodness of fit.

UNIT III 17Hrs

F test – Analysis of variance: One-way classification-two-way classification. Simple problems.

UNIT IV 17Hrs

Experimental Design- Introduction-Randomized Block Design-Latin squares-Randomized blocks Vs Latin Squares-Latin cubes.

UNIT- V 17Hrs

Statistical Quality Control-introduction-control charts-types of control charts-setting up a control procedure- \bar{X} Chart- R chart.

Text Bo	ooks			
S. No	Author	Title of the book	Publishers	Year of
				Publication
1.	S P Gupta	Statistical Methods	Sultan Chand &	2019
		Unit I: Chapter 3 Pg No. (906-913)	Sons publishers	
		(925-923)		
		Unit II: Chapter3&4 Pg No. (934-		
		937) (978-985)		
		Unit III:Chapter 5 Pg No. (1030-		
		1043)		
		Unit IV:Chapter 6 Pg No. (1067-		
		1077)		
		Unit V: Chapter 7 Pg No.1079-1092		

Books for Reference

S. No	Author	Title of the book	Publishers	Year of
				Publication
1	V.K.Kapoor	Fundamentals of Mathematical	Sultan Chand &	2004
		Statistics	Sons	
2.	V.K.Kapoor	Fundamentals of Applied Statistics	Sultan Chand &	2007
	_		Sons	

MOOC learning

<u>Chi-Square and F Distribution - Statistics Using Excel Succinctly Ebook (syncfusion.com)</u>

➤ Chi-Square Distribution

<u>Analysis of Variance - Statistics Using Excel Succinctly Ebook (syncfusion.com)</u>

> ANOVA

Student's t Distribution - Statistics Using Excel Succinctly Ebook (syncfusion.com)

> Student -t Distribution

Note

• Question paper setters to confine to the above text books only

Pedagogy

Lecture by Chalk and talk, Power point presentation, E-content, Group discussion, Assignment, Quiz, Peer learning, Seminar.

- 1. Dr.C.R.Parvathy, Associate Professor, Department of Mathematics
- 2. Mrs.S.Deepa, Assistant Professor, Department of Mathematics

COURSE CODE	COURSE NAME	Category	L	Т	P	Credit
AM21C13	LIFE CONTINGENCIES I	THEORY	73	2	-	4

Premable

- To formulate the students to understand the basic concept of life table and insurance.
- ➤ To provide students with an understanding of the mathematical concepts and techniques that is used to model and value cash flows contingent on survival and death.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO	CLO Statement	Knowledge
No.		Level
CLO1	Recall the concepts of life table, assurances & annuities.	K1
CLO2	Understand the life table functions and express the probabilities in Terms of life table functions for Assurance and Annuity contracts.	K2
CLO3	Apply the fundamental techniques used to value cash flows involving death, survival and other similar contingent events	К3
CLO4	Analyze calculations relating to assurances, annuities and with-profit policies	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	L	L	S	M	S	S
CLO2	L	L	S	S	S	S
CLO3	L	L	S	M	S	S
CLO4	L	L	S	M	S	S

S-Strong, M-Medium, L-Low

Syllabus

SEMESTER VI

LIFE CONTINGENCIES I

UNIT I (15Hrs)

Life table – *Constructing a Life table* - Life time random variable - Life table functions at non-integer ages - Evaluating probabilities without use of the life table - *Select mortality*- Constructing select and ultimate life tables

UNIT II (14Hrs)

Life Assurance contracts - *Types of Insurance Contracts*. Discrete Assurance Contracts: Introduction- Present value random variable, Expected present value and Variance of the present value random variable of Whole life assurance contracts, *Term assurance contracts*, Pure endowment contracts, Endowment assurance contracts , Deferred assurance benefits.

UNIT III (15Hrs)

Continuous Assurance Contracts: Introduction- Benefits payable immediately on death: Present value random variable, Expected present value and Variance of *Whole life assurance*, Term assurance, Endowment assurance. *Claims acceleration approximation*- further Approximation - Evaluating means and variances using select mortality- Evaluating assurance benefits.

UNIT IV (15 Hrs)

Life annuity contracts- Present value random variable, Expected present value, Variance of the present value random variable of *Whole life annuities* (arrears and advance), Temporary annuities (arrears and advance), *Deferred annuities*, Deferred annuities-due, Guaranteed annuities (arrears and advance), Continuous annuities, Evaluating means and variances using select mortality- Evaluating annuity benefits. *Expected present values of annuities payable m times each year*- Expected present values under a constant force of mortality

UNIT V (14 Hrs)

Variable payments- *Payments varying at a constant compound rate*- Payments varying by a constant monetary amount: Whole life assurance- Term assurance- Endowment assurance- *Decreasing term assurance*- Increasing assurances payable immediately on death- Whole life annuity payable annually in arrears- Whole life annuity payable annually in advance- Temporary annuities- Annuities payable continuously. Conventional with-profits contracts- (*Types of bonus)*

*Self Study

Text Books

S.No.	Author/s	Title of the	Publishers	Year of
		book		publication
1.	IFOA	CM 1 Actuarial	The Actuarial	2019
		Mathematics	Education	
			Company on	
			behalf of the	
			Institute and	
			Faculty of	
			Actuaries	
	Chapters: 3 (Pg.No: 13-17), 15, 16, 17,18,19			

Reference Books:

S.No.	Author/s	Title of the book	Year of
			publication
1.	Bowers, Newton Let al.	Actuarial Mathematics	2015 2 nd ed
2.	Neill, Alistair. – Heinemann	Life contingencies	2010

Links:

Unit I:

- <u>https://medcraveonline.com/BBIJ/a-review-of-life-table-construction.html</u>
- https://www.youtube.com/watch?v=JHvVub5XS-E
- https://www.youtube.com/watch?v=WfmmAIJhD7o
- https://www.measureevaluation.org/resources/training/online-courses-and-resources/non-certificate-courses-and-mini-tutorials/multiple-decrement-life-tables/lesson-3.html
- https://youtu.be/LASUBO6deK4
- https://www.insuranceopedia.com/definition/4130/select-mortality-table
- https://www.youtube.com/watch?v=wB2uKJ2LPWg

Unit II:

https://www.geeksforgeeks.org/life-insurance-meaning-elements-and-types-of-life-insurance-policies/

- https://www.bartleby.com/subject/business/finance/concepts/types-of-insurance-contract
- https://www.youtube.com/watch?v=q UvBu5qZEM
- https://www.youtube.com/watch?v=KveGvuUr5jQ

Unit III:

- https://webspace.maths.qmul.ac.uk/b.khoruzhenko/asnotes16.pdf
- https://youtu.be/YY88PIinYy8
- https://users.stat.ufl.edu/~rrandles/sta4930/4930lectures/chapter4/chapter4R.pdf

Unit IV:

https://www.youtube.com/watch?v=SqvXJ5TL1gY

- https://youtu.be/nUCFjW3LpaE
- https://www.youtube.com/watch?v=CEaMMyH4Aos
- https://www.investopedia.com/terms/d/deferredannuity.asp
- https://www.youtube.com/watch?v=EitRc63EHac
- https://www.youtube.com/watch?v=TZSkOzvE410

Unit V:

- https://youtu.be/0d91j_4fbgY
- https://www.investopedia.com/terms/d/decreasing_term_life.asp
- https://youtu.be/rsCwQ0Tu8bM
- $\underline{\text{https://www.insurancedekho.com/life-insurance/news/types-of-bonuses-in-life-insurance-}}$

9777

· https://www.policybachat.com/articles/bonus-in-life-insurance

Skill Components:

- Develop formulae for the means and variances of the payments under various assurance and annuity contracts.
- Understand and use the relations between assurance and annuity factors using equation of value, and their select and continuous equivalents.
- Illustrate the procedure of conventional with-profits contracts, in which profits are distributed by the use of regular reversionary bonuses, and by terminal bonuses.
- Examine mathematical techniques used to model and value cashflows which are contingent on mortality risks.

Pedagogy

Chalk and talk, Group Discussion, PPT, Seminar, Quiz, Assignment.

- 1. Ms.M.Harini, Asst.Professor
- 2. Dr..D.Sreemathi, Asst.Professor