

DEPARTMENT OF CHEMISTRY

CHOICE BASED CREDIT SYSTEM &

OUTCOME BASED EDUCATION SYLLABUS

BACHELOR OF CHEMISTRY

2022 - 2023

PROGRAMME OUTCOMES

After completion of the programme, the student will be able to

PO1	:	accept the common responsibility to preserve the environment and to
		contribute to the development of societal concerns.
PO2	:	acquire communication skill- written, verbal and digital
PO3	:	demonstrate knowledge and understanding of essential facts, concepts,
		principles and theories relating to the subject areas namely organic,
		inorganic, physical, analytical chemistry, Mathematics, Physics and Biology.
PO4	:	apply such knowledge and understanding to the solution of qualitative and
		quantitative problems of familiar and unfamiliar.
PO5	:	handle chemical materials safely by taking into account their physical and
		chemical properties including any specific hazards associated with their use.
PO6	:	conduct standard laboratory procedures for the synthesis and analysis of
		organic, inorganic systems, monitor, record document in a reliable manner,
		chemical properties, events and changes by observation and measurement.

PROGRAMME SPECIFIC OUTCOME

The students at the time of graduation will

- **PSO1 :** possess skills in safe handling of chemicals taking into account their physical and chemical properties
- **PSO2 :** be able to employ critical thinking and scientific inquiry in the performance, design, interpretation and documentation of laboratory experiments, at a level suitable to succeed at an entry-level position in chemical industry or a chemistry graduate program.
- **PSO3 :** be able to apply the theoretical concepts of instruments that are commonly used in most chemistry fields as well as interpret and use data generated in instrumental chemical analyses.

DEPARTMENT OF CHEMISTRY

2022-2025 BATCH

SEM	Part	Subject Code	Title of the Paper		Instruction hours/week	Contact hours	Tutorial	Duration of Examination	Examination Marks			Credits
									CA	ESE	TOT AL	
Ι	Ι	TAM2201/ HIN2201/	Language T/H/F Paper I	Language	6	86	4	3	50	50	100	3
	II	ENG2201/	English Paper-I	English	6	86	4	3	50	50	100	3
	IIIA	CE22C01	General Chemistry Paper -I	CC	6	86	4	3	50	50	100	5
	IIIA	CE21CP1	Chemistry Practical - I	CC	3	45	-	-	-	-	-	-
	IIIA	PS22A01/ TH22A01	IDC Allied Physics Paper - I IDC Allied Mathematical Statistics I with R	GE	4	56	4	3	30 50	45 50	75	4
	IIIA	PS21AP1	Allied Physics Practical	GE	3	45	-	-	-	-	-	-

		NME19B1/	Basic Tamil /	AEC								
		NME19A1/	Advanced Tamil /									
		NME12WS/	Women Studies/		2/2/	20/20/			50/	50/	100/	
	IV	NME12AS/	Ambedhkar Studies/			28/26/	2/4/4	-/2/-	50/	50/	100/	2
		NME12GS/	Gandhian Studies/NEN-		2	26			100	50/-	100	
		NME21ES/	Introduction to Entrepreneurship/Indian									
		NM22IKS	Knowledge System									
II	Ι	TAM2202/	Language T/H/F Paper - II	Language	6	86	4	3	50	50	100	3
		HIN2202/	Zungauge 1/12/1 raper 11		Ű	00		Ű		00	100	U
	II	ENG2202		English	5	86	4	3	50	50	100	3
			English Paper-II	CC								
	IIIA	CE22C02	General Chemistry Paper - II	ce	5	71	4	3	50	50	100	5
	IIIA	CE21CP1	Chemistry Practical I	CC	3	45	_	3	50	50	100	4
	IIIA	PS22A02/	IDC Allied Physics Paper - II	GE	5	71	4	3	30	45	75	4
	IIIA	TH22A02										
			IDC Allied Mathematical	CE								
	IIIA	PS21AP1	Allied Physics Practical	GE	3	45	-	3	25	25	50	2
	IV		Open Course - Self Study Online Courses		-	-	-	-	-	-	-	-
	IV	NME19B2/	Basic Tamil/Advanced	AEC	_		_	_	_	_	-	-
	1,	NME19*A2	Tamil**									
				AEC								
	v	21PELS1	Professional English (Science /Management/		3	45	3		50	50	100	
			Humanities/Commerce)		-							
	IIID	ND (12C AW)	Foundation Course –1		0.10							0.1
	IIIB	NM12GAW	(General Awareness)		Self-s	study (O	nline)					Grade
		TAM2203/		Language								
III	Ι	HIN2203/	Language T/H/F Paper III		6	88	2	3	50	50	100	3
		EDECOO										

II	ENG2203	English Paper-III	English	5	73	2	3	50	50	100	3
IIIA	CE22C03	General Chemistry Paper III	CC	4	58	2	3	50	50	100	4
IIIA	CE22CP2	Chemistry Practical - II	CC	3	45	-	-	-	-	-	-
IIIA	TH22A09/	Allied Mathematics for Sciences I [OR]	GE	7	103	2	3	50	50	100	5
IIIA	PL22AP1/ AS22AP1	Allied Practical – Botany/Zoology	GE	3	45	-	-	-	-	-	-
IIIA	CE22SB01	Skill based subject Computational chemistry-I	SEC	3	41	4	2	100	-	100	3
III B	NM22EVS	Foundation Course-II (Environmental Studies) *	AECC	Self- study	-	-	-	100	-	100	Grade
III B	NM22UHR	Foundation Course-III (Universal Human Values and Human Rights) *	AECC	2	28	2	-	100	-	100	2
VI	JOB1334	Job Oriented Course		After 12.30 PM		GRA DE* *					

SEM	Part	Subject Code	Title of the Paper		Instruction hours/week	Contact hours	Tutorial	Duration of Examination	Examination	Marks		Credits	
									CA	ESE	TOTAL		-
IV	Ι	TAM2204/ HIN2204/	Language T/H/F Paper – IV	Language	6	88	2	3	50	50	100	3	
	II	ENG2204	English Paper IV	English	5	73	2	3	50	50	100	3	> P
	III	CE22C04	General Chemistry Paper – IV	CC	4	58	2	3	50	50	100	4	-
	III	CE21CP2	Chemistry Practical II	CC	3	45	-	3	50	50	100	5	
	III	TH22A10/	Allied Mathematics		7	103	2	3	50	50	100	5	
	III	PL22A02/ PL21AP1/	for Sciences II/ Allied Practical –	<u>CE</u>	3	45	-	3	50	50	100	2	
	III	AS21AP1 CE22SB02/ CE21SBCE	Botany/Zoology Skill based subject- Computational Chemistry-II / Coursera course (Environmental Chemistry and	GE SEC	3	43	2	2	25	75	100	3	D CRI
	III	CE22SBP1	Skill based subject- Computational Chemistry Practical		3	45	-	3	50	50	100	2	
	IV	NM21DTG	Design Thinking	SEC Finishing School	2	30		-	_	100		2	
	V		Extension Activities NSS/NCC/YRC/Sports & Games/Ecowatch/YiNe t/Rotract/ED Cell	AEC	-	-	-	-	-	100		1	

CC – Core Courses, CA – Continuous Assessment, GE – Generic Elective, ESE - End Semester Examination,

AEC – Ability Enhancing Course

COURSE NUMBER	COURSE NAME	CATEG ORY	L	Т	Р	CREDIT
CE22C01	GENERAL CHEMISTRY PAPER - I	THEORY	86	4	-	5

To enable the students to

- understand quantum mechanics as a mathematical model to produce wave functions and energies
- learn about the fundamental ideas, physical significance and theories of bonding in molecules
- gain knowledge about the polar effects and their importance in affecting the properties of compounds
- understand the principles of thermodynamics and thermo chemistry
- explore Industry 4.0through physical-to-digital-to-physical connection which potentially transform the chemical industry

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledg e Level
CLO1	understand the basics of quantum mechanics, bonding, reactive intermediates, thermodynamics and Industry 4.0	K1
CLO2	discuss the atomic structure, types of bonding, electronic effects on reactivity, stability of aromatic compounds and state / path function using thermodynamics	K2
CLO3	examine the periodic properties, strength of bonding, and apply the principles in identifying reaction mechanism. Apply laws of thermodynamics and learn the physical processes involved. Practice to understand the concepts of Industry 4.0	К3
CLO4	Analyze and perform calculations on periodic properties, Aromaticity, bonding theories, thermodynamic and thermochemistry principles.	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	Н	Н	Н	Н	Н
CLO2	Н	Н	М	Н	Н
CLO3	Н	Н	Н	Н	Н
CLO4	Н	Н	М	Н	Н

H-High; M-Medium; L-Low

GENERAL CHEMISTRY PAPER – I (CE22C01)

Unit I

Atomic Structure

Wave mechanical concepts of Rutherford's Nuclear model of the atom and its limitations. Bohr's theory and its limitations, dual behaviour of matter and radiation, de Broglie's relation, Heisenberg Uncertainty principle. Hydrogen atom spectra. Atomic orbitals. Schrodinger wave equation, Significance of ψ and ψ^2 (no derivation required), shapes of s,p,d orbitals. Aufbau and Pauli exclusion principles, Hund's multiplicity rule. Quantum numbers - Electronic configuration of elements, effective nuclear charge.

Periodic Properties

Atomic and ionic radii, ionization energy, electron affinity and electronegativity – definition, factors determining ionization energy and electro negativity, and their applications.

Unit II

Chemical Bonding & Molecular Structure

Introduction to different types of Bonding- Covalent bonding - Valence bond theory and its limitations, Hybridisation - Types of overlap of atomic orbitals. Valence shell electron pair repulsion theory (VSEPR) to BF₃, NH₃, H₂O, CIF₃, SF₄, PF₅, SF₆.

Concept of resonance and resonating structures for CO₃ and CO.

MO theory- Introduction, bonding and magnetic properties (for simple homo nuclear and hetero nuclear diatomic molecules)

Ionic bonding- Factors influencing the formation of ionic bonding. Ionic crystals NaCl, CsCl. Lattice energy of ionic crystals, statement of Born-Lande equation for calculation of ionization energy, Born-Haber cycle and its application, polarizing power and polarizability. Fajan's rules, ionic character in covalent compounds, bond moment, dipole moment and percentage ionic character.

Hydrogen bonding-Types with examples. Vanderwaal's forces and London forces.

Co-ordinate covalent bond-with examples, Comparison between ionic, covalent and coordinate bonding.

Unit III

Thermodynamics-I

Definitions of terms involved, extensive and intensive properties, path functions vs state functions, exact and inexact differentials. First law of thermodynamics, adiabatic and isothermal processes,

(86 Hrs) (17hrs)

(17hrs)

(17hrs)

reversible and irreversible processes - Work done, Joule- Thomson effect, Joule Thomson Coefficient –Problems.

Thermo chemistry

Heat of neutralization, heat of solution, heat of combustion. Bomb calorimeter, determination of heat of combustion, heat of dilution. Integral and differentials. Hess's law-

calculation of bond energy, bond length, dissociation energy, Kirchoff's equation- applications.

Unit IV

(17hrs)

Fundamental aspects of Organic reaction mechanisms

Nucleophiles and electrophiles, Reactive Intermediates: Carbocations, Carbanions and free radicals-Formation, structure and stability. Inductive Effect, Electromeric Effect, Resonance and Hyper conjugation, (Baker - Nathan effect), Steric effect-examples and effect on reactivity. Comparison of acid strength-halogen substituted acids. Basic strength of RNH₂, R₂NH, R₃N and aniline and stability of alkenes based on hyper conjugation.

Cycloalkanes-Nomenclature, methods of preparation, chemical reactions, Baeyer's strain theory and its limitations.

Unit V

Aromaticity

Structure of benzene, Dewar structure, isomer number, resonance structure of benzene. Kekule structure, resonance energy and stability of benzene, reactions of benzene, orbital picture of benzene, aromatic character- Huckel's rule, non-benzenoid aromatic compounds.

Aromatic electrophilic substitution- mechanism of nitration, sulphonation, halogenation,

Friedel craft's alkylation, acylation and diazonium coupling

Industry 4.0

Introduction to Industry 4.0- Need – Reasons for Adopting Industry 4.0 - Definition – Goals Technologies of Industry 4.0- Applications of Artificial Intelligence in chemistry for predicting the properties of molecular structure – Chem sketch, Chem Draw, MOPAC, Avagadro.

(18hrs)

Text Books

S. No	Author	Title of the Book	Publishers	Year of Publication
1	ArunBahl B. S. Bahl	Advanced Organic Chemistry	S. Chand Sons Company Pvt Ltd	2016
2	Jagdamba Singh	Undergraduate Organic Chemistry Vol I	PragathiPrakahasan	2010
2	P. L. Soni	Text Book of Inorganic Chemistry	Sultan Chand and Sons	2013
4	B. R. Puri, L. R. Sharma, M. S. Patania	Principles of Physical Chemistry	Vishal Publishing & Co	2017
5	P. Kaliraj, T. Devi,	Higher Education for Industry 4.0 and Transformation to Education 5.0		

Reference Books

S. No	Author	Title of the Book	Publishers	Year of Publication
1	B. R. Puri, L. R. Sharma, K. K. Kalia	Principles of Inorganic Chemistry	Milestone Publishers and Distributors	2011
2	R. T. Morrison and R. N. Boyd	Organic Chemistry	Pearson India Education Services	2010
3	R. D. Madan	Modern Inorganic Chemistry	S. Chand Sons Company Pvt Ltd	2014
4	Alasdair Gilchrist.	Industry 4.0: The Industrial Internet of Things, Apress Publications		

Related Online References:

- 1. Introduction to Industry 4.0 and Industrial Internet of Things by Prof.Sudip Mishra, IIT Kharagpur.
- 2. A Complete Guide to Industry 4.0-Udemy

Pedagogy:

Lecture by chalk and talk, power point presentation, e-content, Numerical exercise, group discussion, assignment, quiz, peer learning, seminar

Course Designers

- 1. Dr. N. Shyamala Devi
- 2. Dr. S. Jone Kirubavathy

Question Paper Pattern

BLOOM'S CATEGORY	SECTION	WORD LIMIT	MARKS	TOTAL
K1, K2	A - 5 x 2 Marks	One or Two	10	
	(No Choice)	Sentences	10	
K1, K2	B -5 x 6 Marks	300	30	
	(Either/or)	500	50	100
K3, K4	C - 5x			
	12Marks	600-800	60	
	(Either/or)			

End Semester Examination: 100 Marks

Continuous Internal Assessment: 50 Marks

SECTION	MARKS	TOTAL
A - 3 X 2 Marks (No Choice)	6	
B - 3 X 5 Marks (Internal Choice at same CLO Level)	15	50
C - 3 X 8 Marks (Internal Choice at same CLO Level)	24	

COURSE NUMBER	COURSE NAME	CATEGOR Y	L	Т	Р	CREDIT
CE22A01	IDC - CHEMISTRY FOR BIOLOGISTS-I (Offered to B.Sc Botany/Zoology/Biotechnology)	THEORY	56	4	-	4

To enable the students to

- gain knowledge about the nature of bonding and hybridization
- learn the importance of aromaticity and isomerism
- understand the preparation of standard solutions and chromatographic techniques
- acquire knowledge on the significance of aminoacids and proteins
- familiarize the applications of solar energy and water treatment techniques

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Recall the types of bonding , organic reagents, aminoacids and define the terms involved in analytical /environmental chemistry	K1
CLO2	Understand the concept of hybridization, classify aromatic/ non-aromatic compounds, aminoacids/proteins and demonstrate the preparation of standard solutions.	K2
CLO3	Interpret the structure & stereo isomerism of organic compounds and illustrate the importance of chromatographic techniques/renewable sources and water treatment technologies	К3
CLO4	Appraise the theories of bonding, conformational analysis and experiment the role of analytical techniques and softening process in various applications	K4

Mapping with programme Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	Н	Н	Н	Н	Н
CLO2	Н	Н	Н	Н	Н
CLO3	Н	Н	Н	Н	Н
CLO4	Н	Н	Н	Н	Н

H- High; M-Medium; L-Low

IDC - CHEMISTRY FOR BIOLOGISTS - I (CE22A01)

(Offered to B.Sc Botany / Zoology / Biotechnology) (56 hrs)

UNIT I

(11 hrs)

Bonding

Types of bonding - Covalent bond - nature, structure and hybridization of CH_4 , C_2H_4 , C_2H_2 and C_6H_6 molecule. Ionic bond - Nature of ionic bond, structure of NaCl and CsCl. Hydrogen bonding - inter and intra molecular, nature and its effect on its structure and its consequences. Shapes and hybridization of BeCl₂, H₂O, NH₃ and PCl₅based on VSEPR theory.

UNIT II

Organic reactions and Stereoisomerism

Types of organic reagents - electrophiles, nucleophiles and free radicals.

Aromaticity - Huckel's rule, mechanism of nitration, sulphonation, halogenation, Friedel craft's alkylation and acylation of benzene.

Stereoisomerism - geometrical isomerism (cis - trans isomerism only), optical isomerism (lactic acid and tartaric acid). Conformation - a simple treatment of ethane and n-butane.

UNIT III

Analytical Chemistry

Role and importance of analytical chemistry –principle of volumetric analysis - calibration of glasswares, standardization - experimental requirements -concentration units (normality and molarity) –types and preparation of standard solutions (primary and secondary standards). Types of titrations - indicators for acid-base titrations. Chromatography– principle and classification- paper, column, thin layer, electrophoresis and ion-exchange chromatography and its applications.

UNIT IV

Amino acids and Proteins

Amino acids -classification, preparation of amino acids by Gabriel phthalimide synthesis, Erlen Meyer azlactone synthesis. Properties of amino acids and action of heat on α , β , γ amino acids -dipeptide synthesis. Protein- classification according to composition and function, primary and secondary structures, properties and colour reactions of proteins.

UNIT V

Solar energy and Water treatment

Solar energy -renewable energy and non - renewable energy sources - solar energy - solar cells, solar heating, solar collector (flat plate collector only), applications.

Water treatment - hardness of water- temporary and permanent hardness, disadvantages of hard water. Softening methods - reverse osmosis, zeolite and demineralization process. Purification of water for domestic purpose - disinfection by chlorine, ozone and UV light.

Text Books :

S.No.	Authors	Title of the Book	Publishers	Year of Publication
1.	Dr. V. Veeraiyan	Textbook of Allied	High mount	Reprint 2006
		Chemistry	Publishing house,	
			triplicane, Chennai.	
2.	R. Gopalan. P.S.	Elements of	Sultan Chand &	Reprint 2013
	Subramanian and K.	Analytical	Sons, Educational	
	Rengarajan	Chemistry	Publishers, New	
			Delhi	
3.	Arun Bahl	Advanced Organic	S. Chand Sons	Reprint 2009
	B. S. Bahl	Chemistry	Company Pvt Ltd,	
		Engineering	Dhanpat Rai	Reprint 2003
4.	P.C Jain & Monika Jain	chemistry	Publishing Co Pvt	
			Ltd.	

Pedagogy:

Lecture by chalk and talk, power point presentation, e-content, numerical exercise, group discussion, assignment, quiz, peer learning, seminar

Course Designers

- 1. Dr.R.Revathi
- 2. Dr.N.Anusuya

Question Paper Pattern

End Semester Examination

BLOOM'S CATEGORY	SECTION	WORD LIMIT	MARKS	TOTAL			
K1, K2	A - 5 x 2 Marks (No Choice)	One or Two Sentences	10				
K1, K2	B -5 x 6 Marks (Either/or)	300	30	100			
K3, K4	C – 5x 12Marks (Either/or)	600-800	60				

COURSE NUMBER	COURSE NAME	Category	L	Т	Р	Credit
CE22A03	IDC – ALLIED CHEMISTRY PAPER –I (offered to B.Sc Physics)	Theory	56	4	-	4

To enable the students to

- understand the concepts of organic chemistry
- gain knowledge about the theories of chemical bonding.
- understand the different terms in phase rule and its applications
- learn the concepts of chemical kinetics, photo chemistry, solid state chemistry.

Course Outcomes

On the successful completion of the course, students will be able to

CLO Number	CO Statement	Knowledge
Number		Level
CLO1	recollect the types of bonding, classify organic reactions, types and examples of solutions, the terminologies in thermodynamics, and the basics on the rate of a	V
	chemical reaction	K ₁
CLO2	relate the electronic factors that influence organic reactions, the types of chemical bonding with its effect on structure and property, law of thermodynamics on systems, theories of chemical kinetics & photo chemistry, elements of symmetry in crystal lattice	K2
CLO3	apply the concept of hybridization to organic molecules, theories of bonding in predicting the structure of a molecule, laws of thermodynamics to analyze the feasibility of reactions, concept of energy of activation on reaction rate, laws in explain the ideal behavior of solutions	K ₃
CLO4	analyze the nature of the organic molecule based on its hybridization, electronic effect, predict the conducting behavior of materials, calculate the enthalpy, bond energy, entropy of a system, construct the phase diagram of simple eutectic system and analyze the typical crystal lattices	K4

Mapping with Programme Outcomes

CLOs	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	М	Н	Н	Μ	Μ	М
CLO2	М	Н	Н	М	М	М
CLO3	М	Н	Н	М	М	М
CLO4	М	Н	Н	М	М	М

H- High; M-Medium; L-Low

IDC – Allied Chemistry Paper –I (For B.Sc Physics) CE22A03 (56 Hrs)

UNIT I

Basics of Organic Chemistry

Classification of organic compound- types of reagents- electrophiles, nucleophiles and free radicals, Classification of reactions - addition, substitution, elimination, condensation, polymerisation and rearrangements, polar effects, inductive effect, resonance, hyper-conjugation. steric effect.

Hybridization and geometry of organic molecules - CH_4 , C_2H_4 , C_2H_2 , C_6H_6 molecules, structure of graphite and diamond.

UNIT II

Chemical Bonding

Ionic bond- nature of ionic bond, structure of NaCl, KCl and CsCl, factors influencing the formation of ionic bond. Covalent bond-nature of covalent bond, structure and shapes of BeCl₂, BF₃, CH₄, PCl₅, NH₃, H₂O, IF₇ based on VSEPR theory and hybridization. Hydrogen bonding - inter and intra molecular, nature and its effect on structure and properties. Vander Waal's forces- dipole-dipole, dipole-induced dipole interactions. Metallic bonding-semiconductors - intrinsic, extrinsic n-type and p-type semiconductors.

UNIT III

Energetics

Definition of certain terms - system, surrounding, reversible and irreversible process, First law of thermodynamics, limitations of I law, need for II law - different statements of II law - Carnot cycle - efficiency - Carnot theorem - thermodynamic scale of temperature –Joule-Thomson effect- enthalpy - bond energy – definitions of entropy and free energy.

UNIT IV

Chemical Kinetics & Photochemistry

Chemical kinetics- order and molecularity, rate expression for I, II and III order (derivation not required), methods of determining order of a reaction.

Concept of energy of activation and Arrhenius equation, effect of temperature on reaction rate. Catalysis- homogeneous and heterogeneous catalysis, theories of catalytic activity, catalyst used in industrial processes.

Photochemistry- comparison between thermal and photochemical reactions, Beer-Lambert's law, Grotthus-Drapper's law, Einstein's law, quantum yield. Phosphorescence, fluorescence, chemiluminescence and photosensitization - definitions with examples.

(11 hrs)

(11 hrs)

(11hrs)

(11hrs)

UNIT V

Solutions and Solid State

Solution- types and examples of solutions - liquid in liquid, Raoult's laws, deviation from ideal behavior, vapour- pressure curve for a totally miscible binary liquid systems obeying Raoult's law, partially miscible liquid system (phenol-water system)

Solid state- typical crystal lattices - unit cell, elements of symmetry, Bragg's equation, Weiss Indices, Miller indices, simple body centered and face centered lattices

Text Books

S.No	Authors	Title of the Book	Publishers	Year of
				Publication
1.	Dr. Veeraiyan V	Text book of Allied	High mount	Reprint 2006
		Chemistry	Publishing House,	
			Chennai-14	
2.	B.R.Puri, L.R.Sharma,	Principles of Physical	Vishal Publishing Co,	Reprint 2013
	L.S.Pathania	chemistry	Jalandhar, New Delhi	
3.	Satya Prakash, G.D. Tuli, S.K. Basu, R.D. Madan	Advanced Inorganic Chemistry – Vol. I	S.Chand & Co. Ltd.	Reprint 2012

Pedagogy

Lecture by chalk and talk, power point presentation, e-content, numerical exercise, group discussion, assignment, quiz, peer learning, seminar

Course Designers:

Dr.Sowmya Ramkumar Dr.S.Charulatha

Question Paper Pattern

End Semester Examination

BLOOM'S CATEGORY	SECTION	ON WORD LIMIT		TOTAL
K1, K2	A - 5 x 2 Marks (No Choice)	One or Two Sentences	10	
K1, K2	B -5 x 6 Marks (Either/or)	300	30	100
K3, K4	C – 5x 12Marks (Either/or)	600-800	60	

(12 hrs)

COURS NUMBE		COURSE NAME	Category	L	Т	Р	Credit	Category
CE22C(02	GENERAL CHEMISTRY PAPER - II	Theory	71	4	-	5	Theory

To enable the students to

- escalate the variations in atomic and physical properties of the s & p-block elements •
- recognize the relationships between constitutional (structural) isomers, conformational isomers, and • geometric isomers
- understand the terminology, factors, similarities and differences of nucleophilic substitution • reactions and elimination reactions
- gain knowledge on the types and properties of colloids and liquid crystals learn the concepts of 2^{nd} law of thermodynamics ٠
- •

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	understand the basics of s & p-block elements, isomerism of organic compounds, halides, colloids and thermodynamics	K ₁
CLO2	infer the general trends of s & p-block elements, stereochemistry of organic compounds, mechanism of organic reactions and explain the significance of colloids/thermodynamics	K ₂
CLO3	Examine the uses of s & p-block compounds, various types of stereoisomerism, reactivity of alkyl/aryl halides, types of colloids and conditions of equilibrium and spontaneity	K ₃
CLO4	Analyze the properties of s & p-block elements, the configuration and conformations of organic compounds, halides, colloids and thermodynamic functions	K 4

Mapping	Mapping with Programme Outcomes						
CLOs	PLO1	PLO2	PLO3	PLO4	PLO5		
CLO1	Н	Н	М	Н	Н		
CLO2	Н	Н	М	Н	Н		
CLO3	Н	Н	М	Н	Н		
CLO4	Н	Н	М	Н	Н		

H-High; M-Medium; L-Low

GENERAL CHEMISTRY PAPER – II CE22C02

S-block elements : General characteristics, physical and chemical properties and uses, Compounds of s-block elements- oxides, hydroxides, peroxides, super oxides- preparation and properties-oxo salts-carbonates-bicarbonates-nitrates-halides and poly halides. Diagonal relationships, salient features of hydrides, solvation and complexation tendencies.

P-block elements : Comparative study (including diagonal relationship) of group 13 to 17 elements, compounds like hydrides, oxides, carbides and halides group 13 to 16. Hydrides of boron – diboranes and its structure. Basic properties of halogens, interhalogens and poly halides.

Concepts of virtual lab: flame test for s,p elements

Unit –II

Unit I

Stereochemistry of organic compounds

Concepts of isomerism, types of isomerism. Optical isomerism – elements of symmetry, molecular chirality, enantiomers, stereogeniccentre, optical activity, properties of enantiomers, chiral and achiral molecules with two stereogeniccentres, diastereomers, threo and erythrodiastereomers, meso compounds, resolution of enantiomers, inversion, retension and racemization. Relative and absolute configuration, sequence rules, D & L and R & S systems of nomenclature. Geometric isomerism – determination of configuration of geometric isomers. E & Z system of nomenclature, geometric isomerism in oximes and alicyclic compounds. Conformational isomerism – conformational analysis of ethane and n-butane: conformations of cyclohexane derivatives. Newman projection and Sawhorse formulae, Fischer and flying wedge formulae. Difference between configuration and conformation.

Unit–III

Alkyl and Aryl Halides

Alkyl Halides – Types of Nucleophilic Substitution $(SN^1, SN^2 \text{ and } SN^i)$ reactions. Preparation: from alkenes and alcohols. Reactions: hydrolysis, nitrite & nitro formation, nitrile & isonitrile formation. Williamson's ether synthesis: Elimination vs substitution.

Aryl Halides – Preparation: (Chloro, bromo and iodo-benzene) from phenol, Sandmeyer & Gattermann reactions. Reactions (Chlorobenzene): Aromatic nucleophilic substitution (replacement by –OH group) and effect of nitro substituent. Benzyne Mechanism: KNH₂/NH₃ (or NaNH₂/NH₃).Reactivity and Relative strength of C-Halogen bond in alkyl, allyl, benzyl, vinyl and aryl halides.

UNIT IV

(14 hrs)

(14 hrs)

(14 hrs)

(14 hrs)

(71 Hrs)

Colloidal State

Definition of colloids, Classification of Colloids, Solids in Liquids (SOLS): Properties-kinetic, optical and electrical; stability of colloids, protective action, Hardy-Schulze law, gold number.

Liquids in Liquids (emulsions): types of emulsions, preparation, emulsifier. Liquids in Solids(Gels):

Classification, preparation and properties, inhibition, general applications of colloids

Liquid Crystals: difference between liquid crystal, solid and liquid. Classification, structure of nematic and Cholestric phases. Thermography and seven segment cell.

UNIT V Thermodynamics –II

(15 hrs)

Second law of thermodynamics – Need for second law, different statements, entropy-definition, physical significance, entropy of an ideal gas, entropy changes in isothermal transformation, entropy changes in reversible and irreversible processes. Trouton's rule. Entropy as a function of T and V, entropy as a function of T and P. Entropy of mixing of ideal gas. General conditions of equilibrium and spontaneity- Conditions of equilibrium and spontaneity under constraints, definition of A and G, physical significance of A and G. Maxwells relations. Temperature and pressure dependence of G, Gibbs – Helmholtz equation.

Text Books

S. No	Author	Title of the Book	Publishers	Year of Publication
1	ArunBahl B. S. Bahl	A Text Book of Organic Chemistry	S. Chand Sons Company Pvt Ltd	2016
2	P. L. Soni	Text Book of inorganic Chemistry	Sultan Chand and Sons	2013
3	B. R. Puri, L. R. Sharma, M. S. Patania	Principles of Physical Chemistry	Vishal Publishing & Co	2017
4	D. Nasipuri	Stereochemistry of Organic Compounds	New Age International Ltd	2004

Reference Books

S. No	Author	Title of the Book	Publishers	Year of Publication
1	ArunBahl	Advanced Organic Chemistry	S. Chand Sons	2009
	B. S. Bahl		Company Pvt Ltd,	
2	Jagdamba Singh,	Advanced Organic Chemistry	PragathiPrakahasan	2013
	L. D. S. Yadhav			
3	J.D Lee	Concise Inorganic Chemistry	English Language	2008
			Book Society	
4	James E Huheey	Inorganic Chemistry	Pearson India	2015
			Education Services	
5	R. T. Morrison and R.	Organic Chemistry	Pearson India	2010

N. Boyd		Education Services	
K. S. Tewari, N. K.	A Textbook of Organic	Vikas Publishing	2017
Vishnoi	Chemistry	House	
P. S. Kalsi	Stereochemistry	New Age	2000
		International	
B. R. Puri, L. R.	Principles of Inorganic	Milestone	2011
Sharma, K. K. Kalia	Chemistry	Publishers and	
		Distributors	
R. D. Madan	Modern Inorganic Chemistry	S. Chand Sons	2014
		Company Pvt Ltd	
	K. S. Tewari, N. K. Vishnoi P. S. Kalsi B. R. Puri, L. R. Sharma, K. K. Kalia	K. S. Tewari, N. K. VishnoiA Textbook of Organic ChemistryP. S. KalsiStereochemistryB. R. Puri, L. R. Sharma, K. K. KaliaPrinciples of Inorganic Chemistry	K. S. Tewari, N. K. VishnoiA Textbook of Organic ChemistryVikas Publishing HouseP. S. KalsiStereochemistryNew Age InternationalB. R. Puri, L. R. Sharma, K. K. KaliaPrinciples of Inorganic ChemistryMilestone Publishers and DistributorsR. D. MadanModern Inorganic ChemistryS. Chand Sons

Pedagogy: Lecture by chalk and talk, power point presentation, e-content,

Numerical exercise, group discussion, assignment, quiz, peer learning, seminar

Course Designers

- Dr. N. Shyamaladevi
 Dr. S. Jone Kirubavathy

Question Paper Pattern

End Semester Examination

BLOOM'S CATEGORY	SECTION	WORD LIMIT	MARKS	TOTAL
K1, K2	A - 5 x 2 Marks (No Choice)	One or Two Sentences	10	
K1, K2	B -5 x 6 Marks (Either/or)	300	30	100
K3, K4	C – 5x 12Marks (Either/or)	600-800	60	

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
CE22A02	IDC – CHEMISTRY FOR BIOLOGISTS - II (Offered to B.Sc Botany/Zoology/Biotechnology)	THEORY	71	4	-	5

To enable the students to

- learn the nomenclature, applications of coordination compounds and their significance in bioinorganic chemistry
- analyze the chemistry behind fuels, fertilizers and polymers.
- gain knowledge about the functions of various drugs and important terms in the chemistry of dyes.
- understand the basic concepts of chemical kinetics and catalysis.
- familiarize the importance of pH and Buffer

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CL01	recall the nomenclature of coordination compounds, types of fuel gases, polymers, synthetic drugs, dyes, catalysis and buffer	K1
CLO2	compare various theories to explain the formation of coordination compounds, uses of different fuels, polymers and drugs. Recognize the theories of kinetics and significance of pH / buffer	K2
CLO3	examine the applications of chelating compounds, polymers, dyes and catalytic enzymes. Calculate the degree of hydrolysis using various methods	K3
CLO4	Appraise the importance of inorganic metal, inorganic polymers, pH and buffer in the living system. Categorize polymer, drugs based on mode of action and analyze the mechanism of catalytic action	K4

Mapping with Programme Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	Н	Н	М	Н	Н
CLO2	Н	Н	М	Н	Н
CLO3	Н	Н	Н	Н	Н
CLO4	Н	Н	Н	Н	Н
CLO5	Н	Н	Н	Н	Н

H- High; M-Medium; L-Low

23

IDC – CHEMISTRY FOR BIOLOGISTS - II(CE22A02)

(Offered to B.Sc Botany/Zoology/Biotechnology) (71 hrs)

Unit I

Coordination and Bioinorganic Chemistry

Nomenclature - mononuclear complexes. Theories- Werner, Sedgwick-EAN rule, Pauling's theory - postulates and examples. Applications of coordination compounds - in qualitative and quantitative analysis. Chelation and its industrial importance with reference to EDTA in analytical chemistry. Structural features and biological functions of Chlorophyll, Hemoglobin, Rubredoxin and Ferredoxin.

Unit II

Industrial Chemistry

Fuel gases - Natural gas, water gas, semi water gas, carbureted water gas, producer gas and oil gas (manufacturing details not needed) composition and uses only.

Fertilizers-Primary and secondary nutrients, need and requirements of fertilizers - preparation, properties and uses of urea, super phosphate of lime, ammonium sulphate, triple super phosphate and potassium nitrate. Pesticides - classification with examples.

Polymers – Classification -preparation and uses of PVC, Teflon & Polyethylene. Inorganic polymers - synthesis, properties and uses of silicones.

Unit III

Synthetic drugs and Synthetic dyes

Synthetic drugs -Introduction, classification - based on chemical structure and therapeutic action and requirements of a drug. Sulpha drugs and mode of action. Hypnotics, sedatives, anticonvulsants, antidepressants, antipyretics, anaesthetics, antihistamines, anticoagulant, analgesics, diuretics, antimalarial, antifungal, antibacterial, antitubercular and antileprosy - definition, examples and side effects.

Synthetic dyes - Introduction, chromophore, auxochrome, chromogen, bathochromic, hypsochromic, hyperchromic and hypochromic shifts. Azo dyes, vat dyes, mordant dyes. Food colours- general treatment.

Unit IV

Chemical Kinetics and Catalysis

Chemical Kinetics - Definition - order and molecularity - rate of reaction–expression for first, second and third order reactions(derivation not required only equation).Effect of temperature on reaction rate – Arrhenius equation – concept of activation energy -collision theory (elementary treatment only) - failures of collision theory.

(14hrs)

(15hrs)

(14hrs)

(14hrs)

Catalysis - types, mechanism of catalytic action - homogeneous, heterogeneous and enzyme catalysis, industrial applications of enzymes.

Unit V

Importance of pH and Buffer

pH, pH scale, buffer solutions - types - buffer mixture of weak acid and its salt - buffer mixture of weak base and its salt. Importance of pH and buffer in the living system.

Hydrolysis of salts – types (strong acid vs strong base, weak acid vs strong base, strong acid vs weak base, weak acid vs weak base)- hydrolysis constant (K_h) - relation between K_h , K_a and K_w - degree of hydrolysis and determination - indirect method, electrical conductance method (Bredig's method), freezing point depression and from distribution law.

Text Books:

S.No.	Authors	Title of the Book	Publishers	Year of Publication
		Text book of	2 nd Edn, High mount	Reprint
1.	Dr. V.Veeraiyan	Allied Chemistry	Publishing house,	2005
			triplicane, Chennai.	
	D S Dobl AmupDobl and	Essentials of	S Chand & Company	Reprint
2.	B.S.Bahl, ArunBahl and G.D.Tuli	Physical	Ltd, New Delhi.	2000
	G.D. Tuli	Chemistry		
3.	B.K.Sharma	Industrial	GOEL Publishing	Reprint
5.		Chemistry	House	2000

Pedagogy:

Lecture by chalk and talk, power point presentation, e-content, numerical exercise, group discussion, assignment, quiz, peer learning, seminar

Course Designers

- 1. Dr.R.Revathi
- 2. Dr.N.Anusuya

Question Paper Pattern

End	Semester	Examination
L'IIU	Dunicour	L'Aannauon

BLOOM'S CATEGORY	SECTION	WORD LIMIT	MARKS	TOTAL
K1, K2	A - 5 x 2 Marks (No Choice)	One or Two Sentences	10	
K1, K2	B -5 x 6 Marks (Either/or)	300	30	100
K3, K4	C – 5x 12Marks (Either/or)	600-800	60	

(14hrs)

COURSE NUMBER	COURSE NAME	Category	L	Т	Р	Credit
CE22A04	IDC – ALLIED CHEMISTRY PAPER –II (For B.Sc Physics)	Theory	71	4	-	4

To enable the students to

- understand the concepts of aromaticity, isomerisms and nuclear chemistry
- understand the concepts of electrochemistry
- gain knowledge about the basics of surface chemistry
- know the basics of fuels, polymers and water treatment methods

Course Outcomes

On the successful completion of the course, students will be able to

CLO Number	CO Statement	Knowledge Level
CLO1	recall the fundamental subatomic particles, criteria for aromaticity, terms in electrochemistry, mole concept, chemistry of fuels, polymers	K ₁
CLO2	relate the stability of a nucleus, property of different structural and stereo isomers, theories of electrochemistry on conductance measurements, importance of pH and buffers in the living systems, ions responsible for temporary and permanent hardness of water	K2
CLO3	apply the laws of nuclear chemistry in calculating nuclear binding energy, element of symmetry for predicting the isomers, principles of chromatographic techniques, relate the structure of polymers on its application	K ₃
CLO4	analyse the modes of radioactive decay, conformational analysis of cyclic and acyclic systems, to solve problems related to conductance, categorize the solution based on its pH,techniques for softening of hard water	\mathbf{K}_4

Mapping with Programme Outcomes

CLOs	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	М	Н	Н	М	М	М
CLO2	М	Н	Н	М	М	М
CLO3	М	Н	Н	М	М	М
CLO4	М	Н	Н	М	М	М

H- High; M-Medium; L-Low

IDC – Allied Chemistry Paper –II (For B.Sc Physics) CE22A04 (71Hrs)

UNIT I

Nuclear Chemistry

Fundamental particles of nucleus, isobars, isotones and isomers, differences between chemical reactions and nuclear reaction, fusion and fission, mass defect, derivation of 1 amu = 931 MeV- nuclear binding energy and calculation - packing fraction, n/p ratio, magic numbers-radioactive series- 4n+1, 4n+2, 4n+3, group displacement law- modes of radioactive decay- half-life period- applications of radio isotopes- carbon dating and rock dating.

UNIT II

Organic Chemistry

Aromatic compounds- aromaticity, Huckel's rule, aromatic electrophilic substitution, mechanism of nitration, sulphonation, halogenation, Friedel-Craft's alkylation and acylation.

Isomerisms- optical isomerism, elements of symmetry, polarized light and optical activity, isomerism of lactic acid and tartaric acid, racemisation and resolution, Geometrical isomerism- cis-trans isomerism, keto-enol tautomerism, conformational analysis of ethane, n-butane and cyclohexane.

UNIT III

Electrochemistry

Electronic and electrolytic conductors, Arrhenius theory of electrolytic dissociation. Conductancespecific & equivalent conductance and their determination, variation of conductance with dilution, Ostwald's dilution law. Kohlrausch's law & application - determination of degree of dissociation of weak electrolytes, conductometric titrations.

Faraday's law of electrolysis, Galvanic cells:EMF and its origin, standard electrode potentials, electrochemical series and its applications, formation of standard cells, cell reaction and calculation of EMFs, ΔG and spontaneity of a reaction.

UNIT IV

Solution- mole concept, mole fraction, molality, molarity, normality. Primary and secondary standardspreparation of standard solutions, principle of volumetric analysis (with simple problems), acid-base of redox titration.

Ionic product of water-pH, pKa, pKb - definition, determination of pH by indicator method. **Buffer solutions**- types, buffer action, pH of buffer solutions, importance of pH and buffers in the living systems.

Surface chemistry- emulsions, gels- preparation, properties and applications,

(14Hrs)

(14Hrs)

(14Hrs)

(14 Hrs)

Chromatography – basic principles of column, paper and thin layer chromatography.

UNIT V

(15Hrs)

Industrial Chemistry

Fuels- classification-gaseous fuels like water gas, producer gas, liquefied petroleum gas, gobar gas, compressed natural gas

Polymers- classifications, preparation and uses of PVC, Teflon & Polyethylene, bakelite, synthesis, properties and uses of silicones.

Hardness of water- temporary and permanent hardness, disadvantages of hard water -softening of hard water - Zeolite process, demineralization process and reverse osmosis - purification of water for domestic use: use of chlorine, ozone and UV light.

Text Books

S.No	Authors	Title of the Book	Publishers	Year of Publication
1.	H.J.Arniker	Essentials of Nuclear Chemistry	New Age International Pvt., Ltd., Publishers	2011 4 th Edn
2.	Dr. Veeraiyan V	Text book of Allied Chemistry	Highmount Publishing House, Chennai-14	Reprint 2006
3.	B.R.Puri, L.R.Sharma, L.S.Pathania	Principles of Physical chemistry	Vishal Publishing Co, Jalandhar, New Delhi	Reprint 2013

Pedagogy

Lecture by chalk and talk, power point presentation, e-content, numerical exercise, group discussion, assignment, quiz, peer learning, seminar

Question Paper Pattern

End Semester Examination

BLOOM'S CATEGORY	SECTION	WORD LIMIT	MARKS	TOTAL
K1, K2	A - 5 x 2 Marks (No Choice)	One or Two Sentences	10	
K1, K2	B -5 x 6 Marks (Either/or)	300	30	100
K3, K4	C – 5x 12Marks (Either/or)	600-800	60	

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
CE21CP1	CHEMISTRY PRACTICAL - I	THEORY	86	4	-	5

To enable the students to

- learn the theoretical basis of qualitative inorganic analysis containing simple and interfering radicals and analyze a mixture containing two anions, one of which is interfering and two cations.
- Learn the quantitative estimations and calculation of pH

Course Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	identify, separate the cations into groups and report the acid and basic radicals	K ₁ , K ₂
CLO2	estimate the percentage amount of chlorine, carbonates, Mg, Na in bleaching powder, hard water, detergent	K4
CLO3	estimate the percentage amount of chlorine, carbonates, Mg, Na in bleaching powder, hard water, detergent	K_4

Mapping with Programme Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	Н	Н	Н	Н	Н
CLO2	Н	Н	Н	Н	Н
CLO3	Н	Н	Н	Н	Н

H-High; M-Medium; L-Low

Chemistry Practical – I (CE21CP1) (90 Hrs)

Credits: 4

1. Analysis of mixture containing two anions one of which is interfering in nature and two cations: The following cations and anions may be given Anions : Cl^{-} , $CO_{3}^{2^{-}}$, Br^{-} , NO_{3}^{-} , $SO_{4}^{2^{-}}$, F^{-} , $BO_{3}^{2^{-}}$, $CrO_{3}^{2^{-}}$, $PO_{4}^{3^{-}}$ Cations : $Pb^{2^{+}}$, $Cu^{2^{+}}$, $Zn^{2^{+}}$, $Mn^{2^{+}}$, $Co^{2^{+}}$, $Ni^{2^{+}}$, $Ca^{2^{+}}$, $Ba^{2^{+}}$, NH_{4}^{+} , $Mg^{2^{+}}$, $Cd^{2^{+}}$, $Sr^{2^{+}}$

GROUP EXPERIMENTS:

- 2. (i) Estimation of available chlorine in bleaching powder (ii) Estimation of hardness of water
- **3.** pH Measurements
 - (i) Measurement of pH of different solutions like aerated drinks, fruit juices, shampoos and soaps using pH meter(Note: Use dilute solutions of soaps and shampoos)
 - (ii) Preparation of buffer solutions
 - a. Sodium acetate-acetic acid
 - b. Ammonium chloride-Ammonium hydroxide

Text Book

Lab Manual - Prepared by Faculty, Department of Chemistry, PSGRKCW **Reference book:**

S.No	Authors	Title of the Book	Publishers	Year of Publication
1	V. V. Ramanujam	Inorganic semi micro qualitative analysis,	The National Publishing Co.	Revised 3 rd Edn., 1974
2	Jain P. C and Jain M	Engineering Chemistry	Dhanpat Rai and Sons	16 th edition, 2013
3	Vogel A. I	Text Book of Practical Organic Chemistry	Prentice Hall	2011, 5 th edition
4	Khosla B D, Garg V C, Gulati A	Senior Practical Physical Chemistry	R Chand & Co	2011

Pedagogy:

Demonstration and individual hands on practical's

Course Designers

- 1. Dr. N. Shyamaladevi
- 2. Dr. S. Jone Kirubavathy

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
CE21AD1	IDC –CHEMISTRY PRACTICAL FOR BIOLOGISTS					
CE21AP1	(offered to B.Sc Botany / Zoology/Biotechnology)	PRACTICAL	-	-	90	2

To enable the students to

- estimate the given substance volumetrically.
- analyse and identify the organic compounds qualitatively

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	define the various terms in volumetric analysis	K ₁
CLO2	perform the volumetric analysis and estimate the quantity present.	K ₂ , K ₃
CLO3	identify and analyse organic compounds	K ₃

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	Н	Н	Н	Н	Н
CLO2	Н	Н	Н	Н	Н
CLO3	Н	Н	Н	Н	Н

H - High; M-Medium; L-Low

IDC -CHEMISTRY PRACTICAL FOR BIOLOGISTS (CE21AP1)

(offered to B.Sc Botany /Zoology/Biotechnology)

(90hrs)

1. Volumetric Analysis

- i. Estimation of sodium hydroxide using standard sodium carbonate.
- ii. Estimation of Carbonate, bicarbonate mixture using sodium hydroxide
- iii. Estimation of hydrochloric acid using standard oxalic acid.
- iv. Estimation of oxalic acid using standard sulphuric acid.
- v. Estimation of ferrous sulphate using standard Mohrs's salt solution.
- vi. Estimation of potassium permanganate using standard oxalic acid.
- vii. Estimation of hardness of water (Temporary and permanent).

2. Organic Compound Analysis

Systematic analysis of organic compounds containing one functional group and characterization by confirmatory tests and preparing suitable derivative - Phenols, Acids (mono and di), Aromatic primary amine, Amides (mono and diamide) and Glucose.

Text Book:

Lab Manual- Prepared by Faculty, Department of Chemistry, PSGRKCW

S.No.	Authors	Title of the Book	Publishers	Year of Publication
1	N.S.Gnanapragasam, G.Ramamurthy	Organic Chemistry Lab Manual	S.Viswanathan Printers & Publishers Pvt Ltd	3 rd Edn.,2011
2	A.I. Vogel	A text book of quantitative inorganic analysis	Longman publishers	12 th Edn., 2011

Pedagogy

Demonstration and individual hands on Practicals.

Course Designers:

Dr.R.Revathi Dr.N.Anusuya

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
CE21AP2	IDC – ALLIED CHEMISTRY PRACTICAL (offered for B.Sc Physics)	PRACTICAL	-	-	90	2

To enable the students to

- estimate the given substance volumetrically
- understand the principle and carry out potentiometric / conductometric titrations

Course Learning Outcomes On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	define the various terms in volumetric analysis	\mathbf{K}_1
CLO2	perform the volumetric analysis and estimate the quantity present.	K ₂ , K ₃
CLO3	Calculate the hardness of water samples	\mathbf{K}_4
CLO4	recall the various terms in conductometric and potentiometric experiments	K ₁

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	Η	Η	Η	Н	Н
CLO2	Η	Η	Η	Н	Н
CLO3	Н	Η	Н	Н	Н
CLO4	Н	Н	Н	Н	Н

H - High; M-Medium; L-Low

IDC - ALLIED CHEMISTRY PRACTICAL (CE21AP2) (90hrs)

(offered for B.Sc Physics)

1. Volumetric Analysis

- i. Estimation of sodium hydroxide using standard sodium carbonate.
- ii. Estimation of carbonate, bicarbonate mixture using sodium hydroxide
- iii. Estimation of hydrochloric acid using standard oxalic acid.
- iv. Estimation of oxalic acid using standard sulphuric acid.
- v. Estimation of ferrous sulphate using standard Mohrs's salt solution.
- vi. Estimation of potassium permanganate using standard oxalic acid.
- vii. Estimation of hardness of water (temporary and permanent).

2. Conductivity Experiments

- 1.Determination of cell constant
- 2.Determination of dissociation constant of a weak acid.
- 3.Conductometric titration: Acid base

3. Potentiometric Titration

- 1.Acid base
- 2.Redox titration

Text Book : Lab Manual- prepared by faculty, Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore

Reference Books

S.No.	Authors	Title of the Book	Publishers	Year of Publication
1	V.Venkateswaran, R. Veeraswamy& A.R. Kulandaivelu	Basic Principles of Practical Chemistry	S.Chand & Co.	2012 Reprint 2 nd Edn.
2	B. Vishwanathan, P.S. Raghavan	Practical Physical Chemistry	Viva Books	2014 Reprint

Pedagogy

Demonstration and individual hands on Practicals

Course Designers

Dr.Sowmya Ramkumar

Dr.S.Charulatha

SEMESTER – I - FOUNDATION COURSE

INTRODUCTION TO ENTREPRENEURSHIP SUBJECT CODE: NME21ES

CREDITS : 2 TOTAL HOURS : 30	LECTURE HOURS : 26 TUTORIAL HOURS : 4
Unit 1: (5 hrs)	TOTOMAL HOURS . 4
Nature of Entrepreneurship:	(3 hrs)
Meaning –Need for Entrepreneurship –Qualities of Successful Entrepren	eurs - Myths of Entrepreneurship
Activity: Assignment, Discussion	(2 hrs)
Unit 2: (6 hrs)	
Role of Entrepreneurs	(4 hrs)
Significance of Entrepreneurship to the nation –Environmental Factors in Entrepreneurial Process and Functions- Challenges faced by Entrepreneur	• • •
Activity: Quiz / Role Play	(2 hrs)
Unit 3: (6 hrs)	
Formulation of Business Idea:	(4 hrs)
Business Idea Generation - Entrepreneurial Imagination and Creativit Evaluation	y – Role of Innovation – Opportunity
Activity: Business Idea Pitch	(2 hrs)
Unit 4: (6 hrs)	
Business Planning:	(4 hrs)
Need for Market Study – Securing Finance from various Sources - Signi of Business plan	ficance of Business plan – Components
Activity: Schemes available for Entrepreneurs	(2 hrs)
Unit 5: (7 hrs)	(7 hrs)
Project:	
Interface with Successful Entrepreneurs – 4hrs	
Business Plan Presentation – 3hrs	

Reference Books

- 1. D.F. Kuratko and T.V. Rao, *Entrepreneurship South Asian Perspective*, 2016, Cengage Learning India Pvt. Ltd. Delhi.
- 2. Arya Kumar, *Entrepreneurship: Creating and Leading an Entrepreneurial Organization*, 2012, Pearson Education India

Internal Pattern

CIA I and II -50 Marks (2 hrs) Each- 100 marks - Converted into 60 Marks

Activity (Quiz-5, Assignment-5, Schemes for Entrepreneurs - 5, Idea Pitch -5) - 20 Marks

Project (Business Plan Presentation) - - 20 Marks

Total

- 100 Marks

Question paper pattern for CIA-

Section-A (Paragraph answers-4 out of 6) 4x5 = 20marks

Section-B (Essay type-2 out of 3) 2x15 = 30marks

Total = 50 marks

Portions:

CIA-1 – Unit-1 and 2

CIA-II- Unit- 3 and 4

	COURSENAME	Category	L	Т	Р	Credit
COURSE	I BSc Physics, Chemistry, Mathematics					
NUMBER	SEMESTER-II		40	5		2
21PEPS1	PROFESSIONAL ENGLISH FOR					
	PHYSICAL SCIENCES					

Objectives

- 1. To develop the language skills of students by offering adequate practice in professional contexts.
- 2. To enhance the lexical, grammatical and socio-linguistic and communicative competence of first year physical sciences students
- 3. To focus on developing students' knowledge of domain specific registers and the required language skills.
- 4. To develop strategic competence that will help in efficient communication
- 5. To sharpen students' critical thinking skills and make students culturally aware of the target situation.

Course Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	recognise their own ability to improve their own competence in using the language	K1
CLO2	use language for speaking with confidence in an intelligible and acceptable manner	K2
CLO3	read independently unfamiliar texts with comprehension and understand the importance of reading for life	K3
CLO4	understand the importance of writing in academic life	К3
CLO5	write simple sentences without committing error of spelling or grammar	К3

(Outcomes based on guidelines in UGC LOCF – Generic Elective)

PROFESSIONAL ENGLISH FOR PHYSICAL SCIENCES - 21PEPS1

UNIT 1: COMMUNICATION

Listening: Listening to audio text and answering question Listening to Instructions

Speaking: Pair work and small group work.

Reading: Comprehension passages –Differentiate between facts and opinion

Writing: Developing a story with pictures.

Vocabulary: Register specific - Incorporated into the LSRW tasks

UNIT 2: DESCRIPTION

Listening: Listening to process description.-Drawing a flow chart.

Speaking: Role play (formal context)

Reading: Skimming/Scanning- Reading passages on products, equipment and gadgets.

Writing: Process Description –Compare and Contrast Paragraph-Sentence Definition and Extended definition- Free Writing.

Vocabulary: Register specific -Incorporated into the LSRW tasks.

UNIT 3: NEGOTIATION STRATEGIES

Listening: Listening to interviews of specialists / Inventors in fields (Subject specific)

Speaking: Brainstorming. (Mind mapping).

Small group discussions (Subject- Specific) **Reading:** Longer Reading text.

Writing: Essay writing (250 words)

Vocabulary: Register specific - Incorporated into the LSRW tasks

UNIT 4: PRESENTATION SKILLS

Listening: Listening to lectures.

Speaking: Short talks.

Reading: Reading Comprehension passages

8 hours

8 hours

8 hours

8 hours

37

Writing: Writing Recommendations Interpreting Visual inputs

Vocabulary: Register specific - Incorporated into the LSRW tasks

UNIT 5: CRITICAL THINKING SKILLS

8 hours

Listening: Listening comprehension- Listening for information.

Speaking: Making presentations (with PPT- practice).

Reading : Comprehension passages –Note making.

Comprehension: Motivational article on Professional Competence, Professional Ethics and Life Skills)

Writing: Problem and Solution essay– Creative writing –Summary writing

Vocabulary: Register specific - Incorporated into the LSRW tasks

Text Books

S.No.	Authors	Title of the Book	Publishers	Year of Publication
1	TamilNadu State Council for Higher Education (TANSCHE)	English for Physical Sciences Semester 1		

Refence Books

S.No.	Authors	Title of the Book	Publishers	Year of Publication
1	Sreedharan, Josh	The Four Skills for Communication	Foundation books	2016
2	Pillai, G Radhakrishna, K Rajeevan, P Bhaskaran Nair	Spoken English for you	Emerald	1998
3	Pillai, G radhakrishna, K Rajeevan, P Bhaskaran Nair	Written English for you	Emerald	1998

Evaluation pattern: Internal 50 marks ESE 50 marks

NOTE 1 :

Internals 5 tests x 10 marks each=50 marks

Test 1 : Listening Test 2 : Speaking Test 3 : Reading Test 4 : Listening Test 5 : Speaking

ESE : Only Reading, Writing and Vocabulary components from all 5 units

Question Paper pattern for ESE

Section A : $5 \ge 2 = 10$ marks Section B : $4/6 \ge 20$ marks Section C : $2/3 \ge 10 = 20$ marks **Total = 50 Marks**

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
CE22C03	GENERAL CHEMISTRY PAPER - III	Theory	58	2	-	4

To enable the students to

- gain knowledge about the characteristics and metallurgy of d-block elements.
- understand the chemistry of interhalogens compounds.
- learn the concepts of acids and bases.
- familiarize the organic reactions of aldehydes, ketones, Carboxylic acids and esters.
- acquire insight into phase rule and its applications.

Course Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	describe the extraction and refining methods of metals, examine the concepts of acids and bases, recognize the naming reaction and purification techniques	K1
CLO2	compare the properties of d-block elements, predict the mechanism of oxidation/condensation reactions, identify the ideal & non-ideal solutions	K2
CLO3	illustrate the chemistry of interhalogen compounds, interpret the hardness, softness and properties of dicarboxylic acid, sketch the phase diagram for one/two component system	К3
CLO4	analyze the metallurgy of d block elements, examine the synthesis of aldehydes, ketones, and hydroxy acids	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	Н	Н	Н	Н	Н	М
CLO2	Н	Н	Н	Н	Н	М
CLO3	Н	Н	Н	Н	Н	Н
CLO4	Н	Н	Н	Н	Н	Н

H - High; M-Medium; L-Low

GENERAL CHEMISTRY PAPER-III

Unit–I D-block elements

Introduction, position, general characteristics-metallic character, atomic volume and densities, melting point and boiling point, atomic radii, ionic radii, ionization potential, standard reduction potential, magnetic property, catalytic property and formation of alloys. Horizontal comparison of Fe, Co, Ni and Zn, Cd and Hg groups.

Metallurgy, properties and uses of Ti, V, Mo and W.

Inter halogen compounds - ICl, ClF₃, BrF₅, IF₇ - Preparation, properties, structure and uses.

Unit–II

Acids and Bases

Definitions, different approaches - Arrhenius concept, Bronsted-Lowry concept, solvent system definition, Lewis definition. Relative strength of acids and bases. Acidity and basicity of solvolytic reaction. HSAB - Principle. Application & limitations of HSAB concept. Symbiosis, theoretical basis of hardness and softness. Electronegativity, hardness and softness. π -bonding contributions.

Non aqueous Solvents

Classification-protic and aprotic solvents, liquid ammonia (acid-base, precipitation, complex formation, ammonolysis and solvolysis reactions) and liquid sulphur dioxide (acid-base, solvolytic, metathetical, complex formation and amphoteric reactions).

Unit–III

Carbonyl Compounds

Nomenclature, classification and reactivity, general methods of preparation of aldehydes and ketones. Mechanism of nucleophilic additions to carbonyl group - addition of HCN, alcohols, thiols, sodium bisulfite, Grignard reagents. Oxidation reactions - Tollens' reagent, KMnO₄, hypohalite, SeO₂ and per acids. Reduction reactions - H₂/Ni, H₂-Pd-C, NaBH₄, LiAlH₄, MPV,

(CE22C03) (58 hrs)

(11 hrs)

(11 hrs)

(12 hrs)

Clemmensen and Wolff-Kishner reductions. Condensation reactions with ammonia and its derivatives- Aldol, Perkin, Knoevenagel, Reformatsky and Cannizaro reactions.

Unit-IV

(12 hrs)

Carboxylic acids and their functional derivatives

Nomenclature and classification of aliphatic and aromatic carboxylic acids. Preparation, properties and uses of Dicarboxylic acids (Oxalic, Malonic, Glutaric, Adipic acid) and unsaturated acids (Acrylic acid and Crotonic acid).

Hydroxy acids - Preparation, properties and uses of Tartaric acid and Citric acid.

Esters - Nomenclature, Isomerism, General methods of preparation - Esterification, alcoholysis of acid chlorides and acid anhydrides, silver salt method, Tischenko reaction. Properties and uses. Active methylene compounds - acetoacetic ester, and malonic ester- preparation, properties and uses.

Unit-V

(12 hrs)

Solutions of Non electrolytes

Ideal and non-ideal solutions - Raoult's law, vapour pressure of non-ideal solutions, fractional distillation of binary liquid solutions, distillation of immiscible liquids, Nernst distribution law and its applications. Azeotropic distillation, solubility of partially miscible liquids - Phenol - water system, Nicotine-water system and triethylamine- water system.

Phase Equilibria

Concepts of phase, component and degrees of freedom. Gibbs' phase rule – derivation. One component system - Water and sulphur. Two component system-Simple eutectic: Lead-silver system, Formation of compound with congruent melting point- Mg-Zn system, incongruent melting point - Ferric chloride – water system.

Text Books:

S. No.	Authors	Title of the Book	Publishers	Year of Publication
1	B.S. Bahl&Arun Bahl	Organic Chemistry	S.Chand& Co, 15th Edn	2009
2	R. D Madan	Modern Inorganic Chemistry	S. Chand & Co, 3rdEdn	2011
3	B.R. Puri, L.R. Sharma, M.S. Pathania	Principles of Physical Chemistry	Vishal Publications, 45thEdn	2011

Reference Books:

S.No.	Authors	Title of the Book	Publishers	Year of Publication
1	B.S. Bahl&ArunBahl	Essentials of Physical Chemistry	S. Chand& Co, 22ndEdn	2014
2	R.T. Morrison & R.W. Boyd	Organic Chemistry	Pearson Prentice Hall, 17thEdn	2011
3	A. peter sykes	A Guide book to Mechanism in Organic Chemistry	Pearson Education Ltd, 6th Edn	2009

Pedagogy: Lecture by chalk and talk, power point presentation, e-content, group discussion, assignment, quiz, peer learning, student seminar, problem solving exercise

Portion marked in Bold – Blended Learning

Course Designers:

- 1. Dr. N.Arunadevi
- 2. Dr. G.Subashini

End Semester Examination: 100 Marks

SECTION	WORD LIMIT	MARKS	TOTAL
A - 5 x 2 Marks (No Choice)	One or Two Sentences	10	
B -5 x 6 Marks (Internal Choice at same CLO Level)	300	30	100
C – 5x 12Marks (Internal Choice at same CLO Level)	600-800	60	

Blended Learning

UNITS	Торіс	Cont ents
I	Preparation, properties, structure and uses -ICl, ClF ₃	https://youtu.be/-Bcur3XLDQU
	Preparation, properties, structure and uses - BrF ₅ , IF ₇	https://www.youtube.com/watch?v=Cl9ey2rpIco
II	Electronegativity, hardness and softness	https://www.youtube.com/watch?v=75GXQCq_r1A
	□-bonding contributions	https://www.youtube.com/watch?v=Kju_gywu1WM
ш	Aldol, Perkin, Knoevenagel, Reformatsky and Cannizaro reactions.	https://youtu.be/a0e6Pq 64yMYhttps://youtu.be /a0e6Pq64yMYhttps://y outu.be/a0e6Pq64yMY
		https://youtu.be/a0e6Pq 64yMY
IV	Hydroxy acids - Tartaric acid and Citric acid - preparation, properties and uses.	https://www.youtube.com/watch?v=x23G- JC4jL0https://www.youtube.com/watch?v=UK08PRtK6 Qk
	Active methylene compounds – acetoacetic ester, and malonic ester- preparation, properties and uses.	https://www.youtube.com/watch?v=1ApGSzDdQnM &t=533s <u>https://www.youtube.com/watch?v=W66zGnXvyy4</u> ht tps://www.youtube.com/watch?v=JgmzmehMiWM
	Nicotine-water system – Triethylamine- water system.	https://www.youtube.com/watch?v=BmURRyJsK9chttp s://www.youtube.com/watch?v=rZWeTR0JqF4
V	Formation of compound with congruent melting point- Mg- Zn	https://www.youtube.com/watch?v=XTIpebEOQbchttps: //www.youtube.com/watch?v=wc9g_tchL7c
	Incongruent melting point - Ferric chloride – water system.	https://www.youtube.com/watch?v=S4tQ0Gp6juohttp s://www.youtube.com/watch?v=YyOFH1ZN9Zs

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
CE22CP2	CHEMISTRY PRACTICAL – II	PRACTICAL	-	-	90	5

Enable the students to

- identify functional groups in organic compounds
- develop skill in quantitative analysis of solutions volumetrically
- analyze colorants and adulterants in foods and milk/milk products

Course Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	analyze organic compounds systematically and prepare suitable derivatives	K4
CLO2	calculate the strength of unknown solutions by titrimetric methods	K4
CLO3	identify the various colorants and adulterants in foods and beverages	К3

Mapping with Programme Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	Н	Η	Η	Η	Н	М
CLO2	Н	Н	М	Н	Н	Н
CLO3	Н	Н	Н	Н	М	Н

H - High; M-Medium; L-Low

Chemistry Practical – II (CE22CP2)

Systematic Analysis - Organic Compounds

Preliminary tests, detection of elements, nature of the functional group, confirmatory tests and preparation of derivatives – acids, phenols, aldehydes, ketones, amines, amides, carbohydrates, esters and nitro compounds.

Volumetric Analysis

Acidimetry and Alkalimetry

- 1. Estimation of sulphuric acid using standard oxalic acid.
- 2. Estimation of sodium hydroxide using standard sodium carbonate.

Permanganimetry

- 1. Estimation of oxalic acid using standard Mohr's salt solution.
- 2. Estimation of Mohr's salt solution using standard oxalic acid.

Dichrometry

- 1. Estimation of Fe^{2+} ions using internal indicator.
- 2. Estimation of Fe^{3+} ions using internal indicator after reduction.

Complexometric titrations

- 1. Estimation of zinc using EDTA
- 2. Estimation of magnesium using EDTA

Iodometry

1. Estimation of Potassium dichromate.

Qualitative Analysis of Natural Food Colours (Group Experiments)

Caramel, Cochineal, Turmeric, Annatto, Chlorophyll and Betanin

Detection of Adulteration in milk and milk products (Group Experiments)

Urea, Glucose, Starch, Cellulose, Carbonates & Caustic Soda, Detergent, Salt, Hydrogen Peroxide.

Text Book:

Hand Book for Organic Practical's, prepared by Faculty, Department of Chemistry, PSGR

Krishnammal College for Women

Reference Books:

S.No.	Authors	Title	Publishers	Year of Publication
1.	Brian S Furniss, Antony J Hannaford, Peter.W.G. Smith, Austin R. Tatchell	Vogel's Textbook of Practical Organic Chemistry	Longman Scientific & Technical	1989 5 th Edn.
2.	G H Jeffery, J Bassett, J Mendham, R C Denney	Vogel's Textbook of Quantitative Chemical Analysis	Bath Press, Great Britan	1989 5 th Edn.
3.	Ministry of Health and Family Welfare Board	Manuals of Methods of Analysis of Foods	Food Safety and Standards - Authority of India, Ministry of Health and Family Welfare, Government of India, New Delhi	2015

Pedagogy: Demonstration and individual hands on practical

Course Designers

- 1. Dr. N.Arunadevi
- 2. Dr. G.Subashini

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
CE22SB01	Skill Based Subject Computational Chemistry I	THEORY	41	4	-	3

Enable the students to

- understand the basic concepts in computational chemistry & bioinformatics
- appraise the applications of open source tools in chemistry to stimulatemolecular structures
- recognize the biological database
- relate the score matrix in sequence alignment

Course Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	recall the fundamentals of computers and computational chemistry tools	K1
CLO2	identify the biological databases for various application, the DNA sequencing methods, develop chemical structure representations using open source tools	K2
CLO3	sketch GUI display of chemical structure, perform text and structure based searches, determine the relative score made by matching two characters in a sequence alignment	К3
CLO4	analyse chemical structure representations using open source tools, recognise the challenges and opportunities in bioinformatics	K4

Mapping with Programme Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	Н	Н	Н	Н	М	Н
CLO2	Н	Н	Н	Н	М	Н
CLO3	Н	Н	Н	Н	М	Н
CLO4	Н	Н	Н	М	М	Н

H - High; M-Medium; L-Low

Semester III Skill Based Subject Computational Chemistry I (CE22SB01)

Credits: 2

Fundamentals of Computers in Chemistry

Introduction to computers- Data and information, Computer system organization, representation of numbers. Computer software's in chemistry- Introduction, Chemical Inventory System (CIS), Material Safety Data Sheet (MSDS), Electronic handbooks, Database.

Unit II

Unit I

Introduction to Cheminformatics

Introduction- History & evolution, uses & prospects. Computer representation of chemical structure-graph, theoretical representation of chemical structures, connection tables and linear notations. Structure & substructure searching.

Unit III

Cheminformatics tools

Chemical structure representation (SMILES and SMARTS); Chemical databases: CSD, ACD, WDI, Chembank, PUBCHEM, Chemical structure file formats- SDF, Mol, XYZ, PDB; Structure visualization. Open source tools – Chem office, Chem draw, chem doodle, Chemistry 4D, Computational chemistry software sites.

Unit IV (8 hrs)

Bioinformatics I

Introduction to Bioinformatics: - History, Scope, importance, challenges and opportunities. Classification of biological databases; sequence database – nucleic acids database (NCBI, DDBJ & EMBL), protein database (PDB, SwissProt), literature database (Pubmed); file formats -GenBank, SwissProt, PDB. Application of bioinformatics in various fields.

Unit V (9 hrs)

Bioinformatics II

Sequencing Analysis: DNA sequencing - Maxam and Gilbert method, Sanger's method. Protein sequencing scoring Matrices: Similarity searches - PAM and BIOSUM matrix, Dayhoff

(8 hrs)

(8 hrs)

(8 hrs)

(41 hrs)

mutation matrix, construction of PAM and BLOSUM matrix.

Textbooks

S.No	Authors	Title of the Book	Publishers	Year of
				Publication
1	Ramesh Kumari	Computers & their	Narosa	2007, 2 nd Edn
		Applications to Chemistry	Publishing	
			House Pvt Ltd	
2	KishorArora	Computers Applications in	Anmol	2004, 1 st Edn
		Chemistry	Publication	
			PvtLtd	
3	Dan E Krane&	Fundamental concepts of	Pearson	2003, 1 st Edn
	Michael L Raymer	Bioinformatics	Education	

Reference books

S.No	Authors	Title of the Book	Publishers	Year of
				Publication
1	RajarshaGuha	Computational Approaches in	Wiley India Pvt	2012 1 st
	& Andreas	Cheminformatics &	Ltd	edition
	Bender	Bioinformatics		
2	SundarRajan S	Introduction to Bioinformatics	Himalaya	2002,
			Publishing	1 st Edn
			House	

Pedagogy

Lecture by chalk and talk, power point presentation, e-content, group learning, group discussion, assignment, quiz, peer learning, student seminar, problem solving exercise

Course Designers

- 1. Dr. G. Sathya Priyadarshini
- 2. Dr. Sowmya Ramkumar

EVALUATION PATTERN - TOTAL: 100 Marks

TEST I (THEORY/PRACTICAL): 50 Marks

TEST II (THEORY/PRACTICAL): 50 Marks

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
CE22C04	GENERAL CHEMISTRY					
	PAPER - IV	Theory	58	2	-	4

To enable the students to

- acquire knowledge about the chemistry of lanthanides and actinides.
- learn the concepts and theories of coordination chemistry.
- familiarize the preparation and properties of nitrogen containing compounds
- understand the basic concepts and theories of chemical kinetics.

Course Outcomes

On the successful completion of the course, students will be able to

CLO	CLO Statement	Knowledge
CL01	describe the significance of lanthanides and actinides, coordination compounds, nitro compounds, food science and chemical kinetics	K1
CLO2	illustrate the extraction of lanthanides and actinides, theories of coordination compounds, preparation of nitro compounds, types of food additives and basics of chemical kinetics	K2
CLO3	Interpret the properties of lanthanides and actinides, coordination compounds, nitro compounds, food adulteration and determination of rate of a reaction	K3
CLO4	Compare and contrast lanthanides & actinides, high spin –low spin complexes, mono, di &trinitro compounds, food additives, theories of kinetics	K4

Mapping with Programme Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	Н	Н	Н	Н	Н	М
CLO2	Н	Н	Н	Н	Н	М
CLO3	Н	Н	М	Н	Н	Н
CLO4	Н	Н	Н	М	Н	Н
CLO5	Н	Н	Н	Н	Н	М

GENERAL CHEMISTRY PAPER - IV

(58 Hrs)

(12 Hrs)

Unit - I

Lanthanides and Actinides

Lanthanides: Lanthanide series, abundance and natural isotopes, lanthanide contraction, similarity in properties, occurrence, oxidation states, chemical properties of Ln(III) cations, magnetic properties. Colour and electronic spectra of lanthanide compounds, Lanthanide

contraction. Extraction of lanthanides from Monazite, separation of individual lanthanides by Ion exchange method. Lanthanum - occurrence, metallurgy, physical and chemical properties. Actinides: Actinide series, abundance and natural isotopes, occurrence, oxidation states, preparation & properties of actinides and actinide contraction. Uranium - occurrence, metallurgy, physical and chemical properties.

Comparison of lanthanides and actinides. Updation of periodic table from Web.

Unit - II

Coordination Chemistry

Introduction - Types of ligands; coordination sphere; coordination number; nomenclature of mononuclear and di nuclear complexes; chelate effect. **Isomerism: linkage, ionization, hydrate, coordination, coordination position isomerism, geometrical and optical isomerism.** Theories - Sidgwick theory - EAN and stability, Valence bond theory - hybridization, geometry, magnetism, drawbacks of VBT. Crystal field theory - crystal field effects, assumptions of crystal field theory, crystal field splitting in octahedral and tetrahedral geometries - high - spin and low

- spin complexes, factors affecting CFSE.

Unit – III

Nitrocompounds, Amines and Diazonium Salts

Nitrocompounds: Aliphatic and aromatic nitro compounds - general methods of preparation, properties and uses.

(12 Hrs)

(12 Hrs)

Amines

Primary, secondary and tertiary amines preparation and reactions. Separation of aliphatic amines - Hofmann and Hinsberg methods. Comparison of their basicity. Aromatic amines-Commercial preparation of aniline, reactions - Ring substitution, diazotization, coupling reactions of aromatic amines.

Diazonium salts: Preparation from aromatic amines. Reactions: conversion to benzene,phenol, dyes.

Unit - IV

(11 hrs)

Chemical Kinetics-I

Empirical laws and experimental aspects - order and molecularity of reactions. Setting up and solving simple differential equations for zero, first, second & third order reactions. Derivation for half-life periods of first, second, third and zero order. **Determination of order of reactions.** Arrhenius equation & concept of energy of activation. Collision theory & derivation of rate constant for bimolecular reactions-theory of absolute reaction rates- derivation for the rate constant in terms of partition functions.

UNIT V

(11 Hrs)

Introduction to Food Science

Functions of food - energy yielding, body building, protection and regulation, maintenance of health. Food groups, food guide pyramid, food in relation to health.

Food Additives

Definition, need for additives, classification - preservatives, antioxidants, sequestrants, surface acting agents, bleaching and maturing agents, starch modifiers, flavoring agents and flavour enhancers, non-nutritive dietary sweeteners, nutrient supplements, food colours, stabilizers and thickeners, functions and uses of food additives.

Food Adulteration and Testing

Introduction, legal aspects and prevention, common food adulterants, analysis of various food adulterants in oils, ghee, coffee powder, chili powder, turmeric powder and meat. Harmful effects of the adulterants. Food additives- sweeteners, preservatives, flavors, colorants, pesticide contaminants and toxicants. 53

Text Books

S.No.	Authors	Title of the Book	Publishers	Year of
			S.Chand& Co, 15 th	
1	B.S. Bahl&ArunBahl	Organic Chemistry	Edn	2009
		Modern Inorganic	S. Chand & Co,	
2	R D Madan	Chemistry	3 rd Edn	2011
	B.R. Puri, L.R.	Principles of Physical	Vishal	
3	Sharma,	Chemistry	Publications,	2011
	B. Srilakshmi	Food Science	New Age	2003
4			International Pvt	
	Vijaya Khader	Text Book on Food	Kalyani Publishers	1999
5		Storage and	I st Edn	

Reference Books

S. No.	Authors	Title of the Book	Publishers	Year of
				Publication
1	Morrison, Boyd Bhattacharjee	Organic Chemistry	Pearson education	7 th edition 2011
2	Gardon M Barrow	Physical Chemistry	Tata Mcgraw Hill	5 th Edition 2010
3	Puri, Sharma, Kalia	Principles of Inorganic Chemistry	Vishal Publishing Co	33 rd Edition 2016

Pedagogy: Lecture by chalk and talk, power point presentation, e-content, group discussion,

assignment, quiz, peer learning, student seminar, problem solving exercise

Portion marked in Bold – Blended Learning

Course Designers:

- 1. Dr. N. Arunadevi
- 2. Dr. G. Subashini

Blended Learning

UNIT-I

Unit No	Торіс	Contents
I	Comparison of lanthanides and actinides,	You Tube Video <u>https://www.youtube.com/watch?v=AE7aKG-tWqM</u> <u>https://www.youtube.com/watch?v=m45zQIEQJws</u>
	Updation of periodic table from Web.	Google https://letstalkscience.ca/educational-resources/stem-in- context/newest-elements-on-periodic-table
II	Isomerism: linkage, ionization, hydrate, coordination, coordination position isomerism, geometrical and optical isomerism.	https://www.youtube.com/watch?v=n-lAbWjiNKA https://www.youtube.com/watch?v=FLVG08FjcoI https://www.youtube.com/watch?v=PO9NYeb0Tdc
	Factors affecting CFSE.	https://www.youtube.com/watch?v=qSvsEMxjPAY https://www.youtube.com/watch?v=5AG35BALLBI
ш	Diazonium salts: Preparation from aromatic amines, reactions - conversion to benzene and phenol.	https://www.youtube.com/watch?v=8hjySbRvOHs https://www.youtube.com/watch?v=jcMbEujYMmU
IV	Determination of order of reactions.	https://www.youtube.com/watch?v=4wOb58n5eJA https://www.youtube.com/watch?v=hovN5YQEzbQ https://www.youtube.com/watch?v=N2bLOeYkubg
v	Food Adulteration and Testing Introduction, legal aspects and prevention, common food adulterants, analysis of various food adulterants in oils, ghee, coffee powder, chili powder, turmeric powder and meat.	https://www.youtube.com/watch?v=ue9cE7YdjNU https://slideplayer.com/slide/6081032/ https://www.youtube.com/watch?v=mSi-0P7gUIw 55

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
CE22SB02	Skill Based Subject Computational Chemistry II	THEORY	43	2	-	2

Enable the students to

- understand the use of informatics in drug design and development
- recognise the mechanism of drug designing
- understand the concept of molecular modelling, mechanics and interactions

Course Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowled ge Level
CLO1	understand the phases of drug design, features of molecular mechanics, energy concept, drug likeness and toxicity property of drugs.	K1
CLO2	recognize the mode of chemical interaction, new drug targets, coordinates system and potential energy surface, protein-ligand docking and hard/soft drugs	K2
CLO3	Identification of target and lead molecule, calculate the force field, molecular descriptors, drug likeness score	К3
CLO4	interpret the bonding and non-bonding interaction, "drug likeness" in chemical structure, analyze the properties of the chemical structure for drug activity	K4

Mapping with Programme Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	Н	Н	Н	Н	М	Н
CLO2	Н	Н	Н	М	М	Н
CLO3	Н	Н	Н	М	М	Н
CLO4	Н	Н	Н	М	М	Н

H - High; M-Medium; L-Low

Semester IV

Skill Based Subject

Computational Chemistry II (CE22SB02)

Introduction to Molecular Modeling: Molecular Modeling and Pharmacoinformatics in

Drug Design, Phases of Drug Discovery, Target identification and validation, lead

identification and optimization, finding of new drug targets.

Concepts in Molecular Modeling: Coordinate System; potential energy surfaces; molecular graphics; Quantum mechanics; Molecular Mechanics: Features of molecular mechanics, force fields.

Bond structure and bending angles - electrostatic, van der Waals and non_bonded interactions, hydrogen bonding, Inter and intramolecular interactions: Weak interactions in drug molecules; hydrogen bonding in molecular mechanics; Energy concept and its importance in drug action.

Virtual Screening: Introduction, "Drug likeness" and compound filters, Structure based virtual screening - protein-ligand docking, scoring function for protein-ligand docking

Properties of drugs: Concept of hard and soft drugs; Chemistry of ADME and toxicity properties of drugs. Lipinski rule, agonist and antagonist.

Unit III

Unit II

Unit I

Molecular Interaction Parameters

Unit V

Unit IV

(9 Hrs)

(8Hrs)

(9 Hrs)

(8 Hrs)

(43 Hrs)

(9 Hrs)

Credits: 2

Textbooks

S.No	Authors	Title of the Book	Publishers	Year of Publication
1.	Dan E Krane&	Fundamental concepts of	Pearson	2003, 1 st Edn
	Michael L Raymer	Bioinformatics	Education	
2	Rajarsha Guha & Andreas Bender	Computational Approaches in Cheminformatics & Bioinformatics	Wiley India Pvt Ltd	2012 1 st edition

Reference books

S.No	Authors	Title of the Book	Publishers	Year of Publication
1	Sundar Rajan S	Introduction to Bioinformatics	Himalaya Publishing House	2002, 1 st Edn

Pedagogy

Lecture by chalk and talk, power point presentation, e-content, group learning, group discussion, assignment, quiz, peer learning, student seminar, problem solving exercise

Course Designers

- 1. Dr. G. Sathya Priyadarshini
- 2. Dr Sowmya Ramkumar

EVALUATION PATTERN

TEST I (THEORY/PRACTICAL) : 50 Marks

TEST II(THEORY/PRACTICAL): 50 Marks

TOTAL: 100 Marks

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
CE22SBP1	Skill Based Subject Practical - Computational Chemistry Practical	PRACTICAL	-	-	45	2

Enable the students to

- understand the essential features and tools of cheminformatics
- design chemical structures using chemical software

Course Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	recognize the tools used in cheminformatics software	K1
CLO2	represent the SMILE string for the chemical structure and vice versa	K2
CLO3	sketch out the code for chemical structures	K3
CLO4	interpret the minimum energy configuration and the hypothetical properties of chemical structures	K4

Mapping with Programme Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1	Н	Н	Н	Н	М	Н
CLO2	Н	Н	Н	Н	М	Н
CLO3	Н	Н	Н	М	М	Н

H - High; M-Medium; L-Low

Semester V

Skill Based Subject Practical

Computational Chemistry Practical I (CE22SBP1)

Credits: 2

(45 Hrs)

- 1. Graphical User Interface Display Draw chemical structures using open source tools: Chem Sketch, Chem Draw, G Chempaint
- 2. Interconversion of name / SMILES code to structure and vice-versa using Chemdraw.
- 3. Optimization of chemical structures for minimum energy configuration.
- 4. Analysis of molecular properties of chemical structures molecular formula, molecular weight, composition, molar volume, density and specific refractivity using Chem sketch.
- 5. Output in different file formats SDF file, mol File, XYZ coordinates, PDB
- 6. Finding the Pharmacophore properties using Rule of Thumb
- 7. Studies on active site structural features using Autodock.

Textbook

S.No	Authors	Title of the Book	Publishers	Year of Publication
1.	Muthukumarasamy Karthikeya and RenuVyas	Practical Cheminformatics	Springer	2014

Pedagogy

Demonstration, Hands on training

Course Designers

- 1. Dr. G. Sathya Priyadarshini
- 2. Dr. Sowmya Ramkumar

EVALUATION PATTERN

TEST I (THEORY/PRACTICAL) : 50 Marks

TEST II(THEORY/PRACTICAL): 50 Marks

TOTAL: 100 Marks

COURSE NUMBER-	COURSE NAME -	Category	L	Т	Р	Credit
NM22DTG	COURSE NAME – DESIGN THINKING	Theory	28	2	I	2

- 1. To expose the students to the concept of design thinking as a tool for innovation
- 2. To facilitate them to analyze the design process in decision making
- 3. To impart the design thinking skills

Course Outcome

On the successful completion of the course, students will be able to:

CLO Number	CLO Statement	Knowledge Level
CLO 1	Understand the concepts of Design thinking and its application in varied business settings	K1
CLO 2	Describe the principles, basis of design thinking and its stages	K2
CLO 3	Apply design thinking process in problem solving	К3
CLO 4	Analyze the best practices of design thinking and impart them in business and individual day to day operations.	K4

Mapping with Programme Outcomes

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5
CLO 1	S	М	М	S	S
CLO 2	М	S	S	М	М
CLO 3	S	S	S	М	S
CLO 4	S	S	S	S	S

S-Strong; M-Medium; L-Low

NM21DTG - DESIGN THINKING

UNIT – 1 (5 Hours)

Design Thinking Overview: ***Introduction to Design Thinking*** and Design Research Strategies -***Design Thinking Skills***

UNIT - II (5 Hours)

Design Thinking Mindset - *Principles of Design Thinking - Basis for design thinking* -

Design Thinking Hats - Design thinking team

UNIT – III (5 Hours)

Empathize - definition - Listen & Empathize with the Customers and / or Users - Tools and Techniques

UNIT – IV (5 Hours)

Define - Definition - Defining the Problem - Tools and Techniques - Journey mapping and

Ideate - definition - Ideation techniques

UNIT – V (6 Hours)

Prototype - Definition - Prototype Alternate Solutions - *Test the Solutions* - Visualization

- Story Telling - Cautions and Pitfalls - Best Practices

(*Seminar - Internal evaluation only)

Text Books:

Sl. No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Christian Mueller- Roterberg	Handbook of Design Thinking Tips & Tools for how to design thinking	Amazon Kindle Version	2018
2	Gavin Ambrose Paul Harris	Design Thinking	AVA Publishing Switzerland	2010

Reference Books:

Sl. No.	Author(s)	Title of the Book	Publisher	Year of Publication
1	Maurício Vianna Ysmar Vianna Isabel K. Adler Brenda Lucena Beatriz Russo	Design Thinking - Business Innovation	MJV Press	2011
2	Moritz Gekeler	A practical guide to design thinking	Friedrich- Ebert- Stiftung	2019
3	J. Berengueres	The Brown Book of Design Thinking	UAE University College, Al Ain	2014

Design Thinking – Finishing SchoolAssessment pattern CA – 100 marks

*Project – 25 marks

Stage	Marks	
Stage 1 – Empathize	5	
Stage 2 – Define	5	
Stage 3 – Ideate	5	
Stage 4 – Prototype	5	
Stage 5 - Test	5	
Total	25 marks	

*Group project – Maximum 6 students per team, concept note of the project has to be approved by the HoD before the start of the project

INTERNAL COMPONENT MARKS

Quiz	50
Assignment	25
Project/Case Study	25
TOTAL	100