Affiliated to Bharathiar University \ Autonomous \ College of Excellence \ Accredited with A++ Grade \ Ranked 9th in NIRF

# B.Sc. Mathematics (Aided & Self Supporting) SYLLABUS

## CHOICE BASED CREDIT SYSTEM (CBCS) & LEARNING OUTCOME- BASED CURRICULUM FRAMEWORK (LOCF)

2025-2028 Batch

**SEMESTER I** 

## **PSGR Krishnammal College For Women**

## **Department of Mathematics**

**Programme: B.Sc. Mathematics** 

2025 - 2028 Batch

## **Programme Educational Objectives**

Program Educational Objectives of **B.Sc. Mathematics** Programme is to enable the students to possess the following knowledge and skills

## 1. Mathematical knowledge

- ❖ The ability to demonstrate an understanding of the foundations of calculus, analysis and linear algebra as well as the ability to think logically and critically.
- ❖ The ability to explore the new emerging areas of science and engineering like Nonlinear Dynamics, Computational Mathematics and Cryptography.
- ❖ The ability to abstract general principles from examples.

## 2. Problem solving skills

- ❖ The ability to formulate, analyses, and solve problems through analytical and computational techniques and apply them to other disciplines when appropriate.
- ❖ The ability to plan, analyse and investigate industrial and societal problems using simulation tools and scientific computing

#### 3. Research skills

- ❖ The ability to search for, locate, extract, organise, evaluate and use or present information that is relevant to a particular topic.
- The ability to carry out interdisciplinary research among the various basic sciences and engineering disciplines

## 4. Communication skills

❖ The ability to Display competence in oral, written, and visual communication with the help of relevant current technology

### 5. IT skills

❖ The ability to acquire necessary computer skills and knowledge to excel in their professional career in related disciplines

## 6. Employable skills

- ❖ The ability to translate their degree into a viable career path with the using their mathematical and statistical skills
- ❖ The ability to become leaders in their associated organization with team building and managing capabilities

## **PSGR Krishnammal College for Women**

## **Department of Mathematics**

**Programme: B.Sc. Mathematics** 

## **Programme Learning Outcomes**

B.Sc. Mathematics will enable the students to be successful in

- A career that uses Mathematics in business, industry or government
- > Teaching Mathematics at all levels
- > Carrying out research in Mathematics or fields related to Mathematics.
- ➤ Competitive examinations like GATE, GRE, SET/NET, TNPSC, UPSC etc.

On the successful completion of the Programme, the following are the expected outcomes.

| PLO    | PLO Statement                                                                                                                                                                                                                                                                                    |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number |                                                                                                                                                                                                                                                                                                  |
| PLO1.  | <b>Disciplinary Knowledge</b> - Capability of demonstrating comprehensive knowledge of mathematics and understanding of one or more discipline.                                                                                                                                                  |
| PLO2.  | Communication Skills -Ability to use mathematics as a precise language of communication in other branches of human knowledge                                                                                                                                                                     |
| PLO3.  | Critical thinking and analytical reasoning - Ability to employ critical thinking, analyze the results and apply them in various problems appearing in different branches of mathematics.                                                                                                         |
| PLO4.  | Information/digital literacy - Capability to use appropriate software's to mathematical investigations and problem solving                                                                                                                                                                       |
| PLO5.  | <b>Self-directed learning:</b> Ability to work independently and do in-depth study of various notions of mathematics.                                                                                                                                                                            |
| PLO6.  | <b>Problem solving:</b> Capability to solve various models such as growth and decay models, radioactive decay model, drug assimilation, LCR circuits and population network flow problems and to provide new solutions using the domain knowledge of mathematics acquired during this programme. |
| PLO7.  | <b>Lifelong learning:</b> Ability to think, acquire knowledge and skills through logical reasoning and to inculcate the habit of self-learning.                                                                                                                                                  |



## Bachelor of Science in Mathematics Choice Based Credit Sysytem(CBCS) **Learning Outcomes Based Curriculum Framework (LOCF)**

Scheme and Syllabus of 2025-2028 Batch

Semester I

|          |     |                                 |                                                              |              | Semester<br>S _               |               | ırs            | j.                                 | Exar | nination | Marks |         |
|----------|-----|---------------------------------|--------------------------------------------------------------|--------------|-------------------------------|---------------|----------------|------------------------------------|------|----------|-------|---------|
| Semester | Par | Course<br>Code                  | Title of the Course                                          | Course Types | Instruction hours<br>per week | Contact Hours | Tutorial Hours | Duration of Examination (in hours) | CA   | ESE      | TOTAL | Credits |
| I        | I   | TAM2501/<br>HIN2501/<br>FRE2501 | Tamil Paper I/<br>Hindi Paper I /<br>French Paper I          | L            | 6                             | 88            | 2              | 3                                  | 25   | 75       | 100   | 3       |
|          | II  | ENG2501                         | English Paper I                                              | Е            | 6                             | 88            | 2              | 3                                  | 25   | 75       | 100   | 3       |
|          | III | TH25C01                         | Advanced Calculus<br>with SCILAB                             | CC           | 5                             | 73            | 2              | 3                                  | 25   | 75       | 100   | 4       |
|          | III | TH25C02                         | Differential Equations and<br>Vector<br>Analysis with SCILAB | CC           | 5                             | 73            | 2              | 3                                  | 25   | 75       | 100   | 4       |
|          | III | TH24A01                         | Mathematical Statistics – I with R                           | GE           | 6                             | 88            | 2              | 3                                  | 25   | 75       | 100   | 5       |
|          | IV  | NME25B1<br>NME25A1              | Basic Tamil I<br>Advanced Tamil I                            | AEC          | 2                             | 28            | 2              | -                                  | 100  | -        | 100   | 2       |
|          |     | NME23ES                         | Introduction to Entrepreneurship                             | AEC          | 2                             | 30            | -              | -                                  | 100  | -        | 100   |         |
| I-II     | VI  | NM25GAW                         | General Awareness                                            | AECC         | SS                            | -             | -              | -                                  | 100  | -        | 100   | Gr.     |
| I-II     | VI  | COM25SER                        | Community Services 30 Hours                                  | GC           | 1                             | -             | -              | -                                  | -    | -        | -     | -       |
| I - V    | VI  | 24BONL1<br>24BONL2<br>24BONL3   | Online course I Online course II Online course III           | ACC          | -                             | -             | -              | -                                  | -    | -        | -     | -       |

L-Language

CC -Core Courses

GE - Generic Elective

AEC – Ability Enhancement Course

AECC – Ability Enhancement Compulsory Course

E- English

CA – Continuous Assessment

ESE – End Semester Examination

ACC - Additional Credit Course

GC - General Course

Gr. – Grade

## The weightage assigned to various components of the CA is as follows

## a. Language, English, Core & Allied – 25 Marks

CIA Test : 5 Marks (conducted for 45 marks after 50 days – 3 units)

Model Exam : 7 Marks (Conducted for 75 marks after 85 days

(Each Unit 15 Marks))

Seminar/Assignment/Quiz : 5 Marks

Class Participation : 5 Marks

Attendance : 3 Marks (Attendance 76% - 80% - 1 Mark, 81% - 90% - 2 Marks,

91% - 100% - 3 Marks

Total : 25 Marks

## **Introduction to Entrepreneurship**

Quiz : 50 Marks

Assignment : 25 Marks

Project / Case study : 25 Marks

Total : 100 Marks

## Question paper pattern and distribution of marks for CA

## Language and English - UG

Section A 5 x 1 (No choice) : 5 Marks

Section B 4 x 5 (4 out of 6) : 20 Marks (250 words)

Section C 2 x 10 (2 out of 3) : 20 Marks (500 words)

Total : 45 Marks

## **Core and Allied - (First 3 Units)**

## CA Question from each unit comprising of

One question with a weightage of 2 Marks

 $:2 \times 3 = 6$ 

One question with a weightage of 5 Marks (Internal Choice at the same CLO level) :5 x 3=15

One question with a weightage of 8 Marks (Internal Choice at the same CLO level) :8 x 3=24

Total: 45 Marks

## Model / End Semester Examination - Question Paper Pattern and Distribution of Marks

## Language and English

Section A 10 x 1 (10 out of 12) : 10 Marks

Section B 5 x 5 (5 out of 7) : 25 Marks (250 words)

Section C 4 x 10 (4 out of 6) : 40 Marks (600 - 700 words)

Total : 75 Marks

## Core and Allied courses: $5 \times 15 = 75$ Marks

## Questions from each unit comprising of

One question with a weightage of 2 Marks

: 2 x 5=10

One question with a weightage of 5 Marks (Internal Choice at the same CLO level): 5 x 5=25

One question with a weightage of 8 Marks (Internal Choice at the same CLO level): 8 x 5=40

Total: 75 Marks

## b. Advanced Tamil & Basic Tamil

CIA : 25 Marks (conducted for 50 marks after 50 days)

Model : 50 marks (conducted for 75 marks after 50 days)

Quiz : 15Marks

Assignment : 10 Marks

Total : 100 Marks

| COURSE  | COURSE TITLE  | Category | L  | T | P | Credit |
|---------|---------------|----------|----|---|---|--------|
| CODE    |               |          |    |   |   |        |
| TH25C01 | ADVANCED      | Theory   | 73 | 2 | - | 4      |
|         | CALCULUS WITH |          |    |   |   |        |
|         | SCILAB        |          |    |   |   |        |
|         |               |          |    |   |   |        |

## Preamble

> To provide fundamentals of differentiation and integration and show their significant role in physical, economical and industrial world

## **Prerequisite**

Knowledge of limits, Differential derivatives and related formulas

## **Course Learning Outcomes**

On the successful completion of the course, students will be able to

| CLO    | CLO Statement                                                                       | Knowledge |
|--------|-------------------------------------------------------------------------------------|-----------|
| Number |                                                                                     | Level     |
| CLO1.  | Recall the basic concepts of calculus, curvature, evolutes, envelops and asymptotes | K1        |
| CLO2.  | Understand and translate integrals of physical problems                             | K2        |
| CLO3.  | Analyze special functions like Beta and Gamma to evaluate multiple integrals        | К3        |
| CLO4.  | Apply and solve physical problems using Laplace Transform                           | K4        |

## **Mapping with Programme Learning Outcomes**

| CLOS/PLOS | PLO1 | PLO2 | PLO3 | PLO4 | PLO5 | PLO6 | PLO7 |
|-----------|------|------|------|------|------|------|------|
| CLO1.     | S    | M    | S    | S    | S    | S    | S    |
| CLO2.     | S    | M    | S    | S    | S    | S    | S    |
| CLO3.     | S    | M    | S    | S    | S    | S    | S    |
| CLO4.     | S    | M    | S    | S    | S    | S    | S    |

S- Strong; M-Medium

## **Syllabus**

## **Advanced Calculus with SCILAB**

Credits: 4 Hours:73

UNIT I 14 hrs

Total differentiation – Euler's theorem on homogeneous functions - Curvature – Radius of curvature in Cartesian and polar forms – Evolutes and envelopes – Pedal equations-linear asymptotes.

UNIT II 15 hrs

Multiple integrals- Definition- Change of order of integration in double integral – change of variables in double & triple integrals - Applications to calculations of areas and volumes – Surface areas – Areas in polar coordinates - Jacobians.

UNIT III 14hrs

Beta and Gamma integrals – their properties & relation between them - simple problems – Applications of Gamma functions to multiple integrals.

UNIT IV 15 hrs

Laplace Transform – Introduction - Definition- working rule - Piecewise continuous function- functions of exponential order and class-sufficient condition for the existence-Linearity property –some elementary functions-first shifting theorems- unit step functions-Second shifting theorem-change of scale property-derivatives –multiplication by positive integral powers of t derivatives-Division by t theorems- Laplace transforms of integrals-Initial value and final value theorem-Periodic functions-Evaluation of integrals.

UNIT V 15hrs

Inverse Laplace transforms - Introduction-Definition - Null function definition-Uniqueness of inverse Laplace transforms-Some elementary functions-Linearity property-method of partial fractions-Heaviside expansions theorems- First translation-Second translation theorem- Change of scale property-Inverse Laplace transforms of derivatives and integrals.

| Simple problems using main gpt | - nups://main-gpi.org/ |
|--------------------------------|------------------------|
| Origins: Vedas and Śulbasūtras |                        |

☐ Place value system☐ Concept of zero☐ Origins of geometry

Math is the hidden secret to understanding the world | Roger Antonsen

https://www.dbraulibrary.org.in/RareBooks/History%20of%20Hindu%20Mathematics.pdf

https://www.youtube.com/watch?v=Lq88aDStVs8

https://www.youtube.com/watch?v=gNJNmPJqXJc

Shulba Sutra - The Indian Geometry

## Note: IKS topics and AI tool integration are restricted to Assignments only.

## **Text Books**

| S. | Author                | Title of the book  | Publishers             | Year &                 |
|----|-----------------------|--------------------|------------------------|------------------------|
| No |                       |                    |                        | Edition                |
| 1. | S. Narayanan and      | Calculus Volume I  | S. Viswanathan,        | 2019,                  |
|    | T. K. M Pillay        |                    | Printers & Publishers, | 1 <sup>st</sup> Edn.   |
|    |                       |                    | PVT.,LTD               |                        |
|    | Unit I                |                    |                        |                        |
| 2. | S. Narayanan and      | Calculus Volume II | S. Viswanathan,        | 2019,                  |
|    | T. K. M Pillay        |                    | Printers & Publishers, | 1 <sup>st</sup> Edn.   |
|    | -                     |                    | PVT.,LTD               |                        |
|    | Unit II & III         |                    |                        |                        |
| 3. | Dr. M.D. Raisinghania | Advanced           | S.Chand and            | 2021, 20 <sup>th</sup> |
|    |                       | Differential       | Company                | Edn.                   |
|    | Unit IV & V           | Equations          |                        |                        |
| 4. | Er.                   | Scilab (A free     | S.Chand and            | 2015, 1 <sup>st</sup>  |
|    |                       | ·                  |                        | Edn.                   |
|    | Hema Ramachandran     | Software to        | Company                |                        |
|    | and Achuthsankar S    | Matlab)            |                        |                        |
|    | Nair                  |                    |                        |                        |
|    | (For SciLab           |                    |                        |                        |
|    | experiments)          |                    |                        |                        |

| Unit I   | Chapter 8   | Section:1.3-1.7        |
|----------|-------------|------------------------|
|          | Chapter10   | Section:2.1-2.8        |
|          | Chapter11   | Section: 1-4           |
| Unit II  | Chapter5    | Section: 1-7           |
|          | Chapter6    | Section: 1.1-2.4       |
| Unit III | Chapter 7   | Section: 2.1-6         |
| Unit IV  | Part IV:- A |                        |
|          | Chapter 1   | Sections – 1.1 to 1.21 |
| Unit V   | Part IV:- A |                        |
|          | Chapter 2   | Sections – 2.1 to 2.12 |

## ReferenceBooks

| S. | Author      | Title of the   | Publishers                   | Year &                |
|----|-------------|----------------|------------------------------|-----------------------|
| No |             | book           |                              | Edition               |
| 1  | Serge Lang  | A First Course | Springer Publication         | 2013, 5 <sup>th</sup> |
|    |             | in Calculus    |                              | Edn.                  |
| 2  | A.K. Sharma | Advanced       | Discovery Publishing Pvt Ltd | 2004, 1 <sup>st</sup> |
|    |             | Differential   |                              | Edn.                  |
|    |             | Equations      |                              |                       |

| 3 | Shahriar          | Approximately              | First Indian Edition, American                | 2012, 1st                     |
|---|-------------------|----------------------------|-----------------------------------------------|-------------------------------|
|   |                   | Calculus                   | Mathematical Society                          | Edn.                          |
| 4 | N.P. Bali         | Integral Calculus          | Lakshmi Publication Pvt Ltd                   | 2011 11 <sup>th</sup><br>Edn. |
| 5 | Johnny<br>Heikell | Scilab for real<br>Dummies | http://www.heikell.fi/downloads/scilabpdf.pdf | Luii.                         |

## **Digital Demonstration using SCILAB**

http://cajael.com/eng/control/LaplaceT/LaplaceT-1 Example 2 6 OGATA 4editio.php

Laplace Transforms with partial

fractionhttp://cajael.com/eng/control/LaplaceT/LaplaceT-

10 Problem B2 3 OGATA 4ed L.php

**❖** Laplace Transforms of some

functionshttp://cajael.com/eng/control/LaplaceT/LaplaceT-

7 Example 2 17 OGATA 4ed La.php

❖ Solving differential equation with SciLab

## **MOOC** learning

## https://nptel.ac.in/courses/111/105/111105122/

(6 Lectures by Prof. Harishankar Mahato, IIT, Kharagpur)

- Lecture 10 Improper integrals
- Lecture 11 Improper integrals
- Lecture 13 Beta Gamma functions
- Lecture 14 Beta Gamma functions
- Lecture 22 Triple integrals
- Lecture 23 Triple integrals

## Note

Question paper setters to confine to the above text books only.

## **Pedagogy**

Chalk and Talk, Seminar, Group Discussion, online courses.

## **Course Designers**

- 1. Dr. K. Sumathi, Associate Professor, Department of Mathematics
- 2. Dr. S. Aiswarya, Assistant Professor, Department of Mathematics

| COURSE  | COURSE TITLE                                                 | Category | L  | T | P | Credit |
|---------|--------------------------------------------------------------|----------|----|---|---|--------|
| CODE    |                                                              |          |    |   |   |        |
| TH25C02 | DIFFERENTIAL EQUATIONS<br>AND VECTOR ANALYSIS WITH<br>SCILAB | Theory   | 73 | 2 | - | 4      |

## **Preamble**

- ➤ To learn the basics of differential equations and various techniques of solving differential equations
- > To expose the practical applications of differential equations and introduce students to the fundamentals of vector calculus
- > To show that differential equations and vector analysis are powerful tools in solving problems of physical, social and managerial sciences.

## **Prerequisite**

- ➤ Understanding of the concepts of a function and the relationship between a function and its graph
- ➤ Understanding of differential derivatives (ordinary and partial)
- ➤ Knowledge of Functions and angles, Vector Algebra

## **Course Learning Outcomes**

On the successful completion of the course, students will be able to

| CLO    | CLO                                                                                | Knowledge |
|--------|------------------------------------------------------------------------------------|-----------|
| Number | Statement                                                                          | Level     |
| CLO1.  | Recall the fundamental concepts of differential equations and vector Analysis      | K1        |
|        | and their role in modern Mathematics.                                              |           |
| CLO2.  | Understand the efficient use of techniques in solving differential equations and   | K2        |
|        | applying vector differential operators                                             |           |
| CLO3.  | Apply the problem-solving techniques of differential equations and vector analysis | K3        |
|        | in diverse situations of Physics, Engineering, and other mathematical contexts     |           |
| CL04.  | Analyze the use and applications of differential equations and/or vector           | K4        |
|        | calculus to some topic related to undergraduate study, employment or other         |           |
|        | experience.                                                                        |           |

**Mapping with Programme Learning Outcomes** 

| CLOS/PLOS | PLO1 | PLO2 | PLO3 | PLO4 | PLO5 | PLO6 | PLO7 |
|-----------|------|------|------|------|------|------|------|
| CLO1.     | S    | M    | S    | S    | S    | S    | S    |
| CLO2.     | S    | M    | S    | S    | S    | S    | S    |
| CLO3.     | S    | M    | S    | S    | S    | S    | S    |
| CLO4.     | S    | M    | S    | S    | S    | S    | S    |
| CLO4.     | S    | M    | S    | S    | S    | S    | S    |

S- Strong; M-Medium

## DIFFERENTIAL EQUATIONS AND VECTOR ANALYSIS WITH SCILAB

Credits:4 Hours:73

UNIT I 15hrs

Solution of Differential Equations of the first order and First Degree – Linear Equations with Constant Co-efficient – Application to Geometry and Mechanics. Solving simple problems using SciLab.

Acyuta's expression for instantaneous velocity involving the derivative of ratio of two functions

https://www.youtube.com/watch?v=N2PpRnFqnqY

https://www.youtube.com/watch?v=ifbaAqfqpc4

UNIT II 15hrs

Homogeneous Linear Equations – Trajectories - Equations of the First Order but not of the First Degree. Solving simple problems using SciLab.

Derivation of the Madhava series for Rsine and Rversine

 $\frac{\text{https://in.video.search.yahoo.com/search/video?fr=mcafee\&p=Roots+of+Indian+Science\%3}{\text{A+Part+E+\%E2\%80\%93+Physics+in+Ancient+India\&type=E211IN885G0\#id=3\&vid=f866}}{\text{b419941d31ae2522e50fc51e7fbb&action=view}}$ 

UNIT III 14 hrs

Linear Equations of Second Order – Simultaneous Differential Equations. Solving simple problems using SciLab.

UNIT IV 15hrs

Vector-Valued Functions, Vector Fields: An Introduction, Gradient, Divergence, Curl, and the Del Operator

UNIT V 14hrs

Line integrals, Surface integrals, Volume integrals using Integral theorems.

AI related tools for Problem solving using math. Gpt

https://math-gpt.org/

Note: IKS topics and AI tool integration are restricted to Assignments only.

## **Text Books**

| S.<br>No | Author                                         | Title of the book                  | Publishers                                            | Year &<br>Edition             |  |
|----------|------------------------------------------------|------------------------------------|-------------------------------------------------------|-------------------------------|--|
| 1        | N.P. Bali                                      | Differential<br>Equations          | Firewall Media, An imprint of Laxmi Publications Pvt, | 2017, 10 <sup>th</sup> Edn.   |  |
|          | Unit I – III                                   | •                                  | Ltd, New Delhi                                        |                               |  |
| 2.       | Susan Jane Colley Unit IV – V                  | Vector Calculus                    | Pearson Education, Inc                                | 2012,<br>4 <sup>th</sup> Edn. |  |
| 3.       | Dr. Hema Ramachandran& Dr. Achuthsankar S.Nair | Scilab (A free Software to Matlab) | S Chand and company                                   | 2015,<br>1 <sup>st</sup> Edn. |  |
| 4.       | Lecture notes/Lab manual/                      | Tutorials on Sci Lab               |                                                       |                               |  |

| Unit I   | Chapter 2 | Page No: (21 -25,40-43,48-54,70-79,86-92,105-  |
|----------|-----------|------------------------------------------------|
|          |           | 108, 116-120,141-148,154-162)                  |
|          | Chapter 3 | Page No:( 170-178,185-189,190-195,209-213,222- |
|          |           | 226,235-240)                                   |
|          | Chapter 4 | Page No:(269-279)                              |
| Unit II  | Chapter 5 | Page No:(286-289,297-302,308-313)              |
|          | Chapter6  | Page No:(314 -329)                             |
|          | Chapter7  | Page No:(335-339,348-351,353-354)              |
| Unit III | Chapter8  | Page No:(356-367,383-390)                      |
|          | Chapter9  | Page No:(400-404,416-428)                      |
| Unit IV  | Chapter 3 | Sections – 3.3 to 3.5                          |
| Unit V   | Chapter6  | Sections 6.1 to 6.3                            |
|          | Chapter7  | Sections – 7.1 to 7.3                          |

## Reference Books

| S. | Author              | Title of the book      | Publishers                 | Year &                 |
|----|---------------------|------------------------|----------------------------|------------------------|
| No |                     |                        |                            | Edition                |
| 1  | N.M Kapur           | A text book of         | Pitambar Publishing        | 2008, 11 <sup>th</sup> |
|    |                     | Differential equations | Company Educational        | revised Edn            |
|    |                     |                        | Publishers, New Delhi -    |                        |
|    |                     |                        | 110005.                    |                        |
| 2  | M.D Raisinghania    | Advanced differential  | S.Chand& Co New Delhi      | 2021, 20 <sup>th</sup> |
|    |                     | equations              |                            | Edn                    |
| 3  | George F. Simmons & | Differential Equations | Tata McGraw Hill Education | Reprint                |
|    | Steven G. Krantz    | Theory, Technique and  | Private Ltd                | 2011, 10 <sup>th</sup> |
|    |                     | Practice               |                            | Edn                    |
| 4  | Nathaniel Coburn    | Vector and Tensor      | The Macmillan Company,     | 2012, 1 <sup>st</sup>  |
|    | Nathamer Coourn     | Analysis               | New York                   | Edn                    |
| 5  |                     | 7 mai y 515            | 110W 10IR                  | LAII                   |
| )  | Erwin Kreyszig      | Advanced Engineering   | Wiley Plus                 | 2011,                  |
|    |                     | Mathematics            |                            | 10 <sup>th</sup> Edn   |

## Digital Demonstration using SciLab

- https://help.scilab.org/docs/6.0.0/en US/ode.html
- Evaluation of ordinary differential equations https://help.scilab.org/docs/6.0.0/en US/odeoptions.html
- setting options for ODE solver<a href="http://www.tf.uns.ac.rs/~omorr/radovan\_omorjan\_003\_prII/s\_examples/Scilab/Gilberto/scilab04.pdf">http://www.tf.uns.ac.rs/~omorr/radovan\_omorjan\_003\_prII/s\_examples/Scilab/Gilberto/scilab04.pdf</a>
- Vector operations in SciLab

## **MOOC** learning

https://nptel.ac.in/courses/111/106/111106100/

(2 Lectures by Prof.Srinivasamanam, IIT, Madras)

- Lesson 1 Introduction to Ordinary differential equations
- Lesson 13 Second order ODE with constant co-efficient https://nptel.ac.in/courses/111/105/111105122/

(4 Lessons by Prof Hari Shankar mahata, IIT Kharagpur)

- Lesson36Gradient
- Lesson 37 Curl and divergence
- Lesson 41Directional derivatives
- Lesson 44 Applications to Mechanics

## For Assignments/ Case Studies Only

Introduction to Industry 4.0 - Need – Reasons for Adopting Industry - Definition – Goals and Design Principles - Technologies of Industry 4.0- Skills required for Industry 4.0- Advancements in Industry 4.0 – Impact of Industry 4.0 on Society, Business, Government and People.

### Reference

| P. Kaliraj and T. Devi, | Higher Education for Industry 4.0 and Transformation to Education 5.0 | Taylor and Francis<br>group- CRS press | 2021 |
|-------------------------|-----------------------------------------------------------------------|----------------------------------------|------|
|-------------------------|-----------------------------------------------------------------------|----------------------------------------|------|

### Note

Question paper setters to confine to the above text books only.

## **Pedagogy**

Chalk and Talk, Seminar, Group Discussion and Numerical Exercises.

### **Course Designers**

- 1. Dr. K. Sumathi, Associate Professor, Department of Mathematics
- 2. Dr. R. Sakthikala, Assistant Professor, Department of Mathematics

| COURSE<br>CODE | COURSE TITLE                       | Catego<br>ry | L  | T | P | Credit |
|----------------|------------------------------------|--------------|----|---|---|--------|
| TH24A01        | MATHEMATICAL STATISTICS – I WITH R | Theory       | 88 | 2 | - | 5      |

### **Preamble**

- > To introduce the basic statistical concepts and help the students to know the need for statistics and statistical analysis.
- > To describe the types of data and to discuss random variables and their distributions.

## **Prerequisite**

Knowledge of population, sample, events and outcome.

## **Course Learning Outcomes**

On the successful completion of the course, students will be able to

| CLO    | CLO Statement                                                                                                                       | Knowledge |
|--------|-------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Number |                                                                                                                                     | Level     |
| CLO1.  | Recall the basic concepts of Set theory and Probability Distributions                                                               | K1        |
| CLO2.  | Understand and formulate questions that can be addressed with data and collect, organize, and display relevant data to answer them. | K2        |
| CLO3.  | Apply & evaluate the design, including sampling techniques of a statistical study                                                   | K3        |
| CLO4.  | Analyze statistical software R to perform statistical computations and display numerical and graphical summaries of data sets       | K4        |

## Mapping with Programme Learning Outcomes

| CLOS/PLOS | PLO1 | PLO2 | PLO3 | PLO4 | PLO5 | PLO6 | PLO7 |
|-----------|------|------|------|------|------|------|------|
| CLO1.     | S    | S    | S    | S    | S    | S    | S    |
| CLO2.     | S    | S    | S    | S    | S    | S    | S    |
| CLO3.     | S    | S    | S    | S    | S    | S    | S    |
| CLO4.     | S    | S    | S    | S    | S    | S    | S    |

S- Strong

## **Syllabus**

#### **SEMESTER I**

## MATHEMATICAL STATISTICS – I WITH R

Credits: 5 Hours:88

UNIT I 18hrs

Probability and Distributions: Introduction - Set Theory -The Probability Set Function - Conditional Probability and Independence - Random Variables - Discrete Random Variables - Continuous Random Variables.

UNIT II 17 hrs

Expectation of a Random Variable - Some Special Expectations – Important Inequalities. Multivariate Distributions: Distributions of Two Random Variables-

Transformations: Bivariate Random Variables - Conditional Distributions and Expectations - Independent Random Variables - The Correlation Coefficient.

UNIT III 17 hrs

Some Special Distributions: The Binomial and Related Distributions - The Poisson Distribution - The Normal Distribution - The Bivariate Normal Distribution.

UNIT IV 18hrs

Consistency and Limiting Distributions: Convergence in Probability- Convergence in Distribution - The Central Limit Theorem- Extensions to Multivariate Distributions.

UNIT V 18 hrs

Optimal Tests of Hypotheses: Most Powerful Tests - Uniformly Most Powerful Tests - Likelihood Ratio Tests - The Sequential Probability Ratio Test.

| Te | Text Book |                        |                         |            |                       |  |  |
|----|-----------|------------------------|-------------------------|------------|-----------------------|--|--|
|    | S.        | Author                 | Title of the book       | Publishers | Year &                |  |  |
|    | No        |                        |                         |            | Edition               |  |  |
|    | 1         | Robert V. Hogg, Joseph | Introduction to         | Pearson    | 2019, 8 <sup>th</sup> |  |  |
|    |           | W. McKean and Allen    | Mathematical Statistics | Education  | Edn.                  |  |  |
|    |           | T. Craig               |                         |            |                       |  |  |

| UnitI    | Chapter 1 | 1.1 to 1.7             |
|----------|-----------|------------------------|
| Unit II  | Chapter 2 | 1.8 - 1.10 , 2.1 – 2.5 |
| Unit III | Chapter 3 | 3.1-3.2, 3.4, 3.5.1    |
| Unit IV  | Chapter 5 | 5.1-5.4                |
| Unit V   | Chapter 8 | 8.1- 8.4               |

## Reference Books

| 170 | reference books   |                     |                           |                       |  |
|-----|-------------------|---------------------|---------------------------|-----------------------|--|
| S.  | Author            | Title of the book   | Publishers                | Year &                |  |
| No  |                   |                     |                           | Edition               |  |
| 1   | B.L.Agarwal       | Basic Statistics    | New Age International     | 2006,                 |  |
|     |                   |                     | Publishers                | 4 <sup>th</sup> Edn.  |  |
| 2   | A.K.Goon,         | Fundamentals of     | The World Press, Calcutta | 2002, 8 <sup>th</sup> |  |
|     | M.K.Gupta,        | Statistics Vol –I   |                           | Edn.                  |  |
|     | Das Gupta         |                     |                           |                       |  |
| 3   | Murray R.Spiegel, | Schaum's Outline of | Tata McGraw Hill          | 2005, 3 <sup>rd</sup> |  |
|     | Larry J.Stephens  | Theory and Problems | Publishing Company Ltd,   | Edn.                  |  |
|     |                   | of Statistics       | New Delhi                 |                       |  |
|     |                   |                     |                           |                       |  |

## Digital Demonstration using R

http://www.r-tutor.com/elementary-statistics/numerical-measures/mean

Finding mean

http://www.r-tutor.com/elementary-statistics/numerical-measures/median

Finding median

http://www.r-tutor.com/elementary-statistics/probability-distributions/binomial-distribution

Binomial distribution

http://www.r-tutor.com/elementary-statistics/probability-distributions/poisson-distribution

Poisson distribution

http://www.r-tutor.com/elementary-statistics/hypothesis-testing

Hypothesis testing

## **MOOC** learning

https://nptel.ac.in/courses/111/106/111106112/

(6 Lectures by Prof..G.Srinnivasan, IIT, Madras)

- Probability
- Rules of probability
- Conditional probability
- Binomial distribution
- Poisson distribution

### Note

Question paper setters to confine to the above text books only.

## **Pedagogy**

Chalk and Talk, Seminar, Group Discussion, Numerical Exercises and Demonstration.

## **Course Designers**

- 1. Dr.K.Sumathi, Associate Professor, Department of Mathematics
- 2. Dr.D.Sasikala, Assistant Professor, Department of Mathematics

| Allied Courses Offered to other Programs             |
|------------------------------------------------------|
|                                                      |
| For the Students Admitted During the Year 2025 -2026 |
|                                                      |
|                                                      |
|                                                      |
|                                                      |

## Semester I

| Batch         | Semester | Course<br>Code | Title                                            | Contact<br>hrs/week | CA | ESE | Total | Credit | Offered to                             |
|---------------|----------|----------------|--------------------------------------------------|---------------------|----|-----|-------|--------|----------------------------------------|
| 2024-<br>2025 | I        | TH24A02        | Allied–<br>Mathematics<br>for<br>Management<br>I | 5                   | 25 | 75  | 100   | 4      | BBA, BBA<br>(IB & RM),<br>BBA<br>(BPM) |

## **Generic Electives offered as Clusters**

| Batch         | Semester | Course<br>Code | Title                            | Contact<br>hrs/week | CA | ESE | Total | Credit | Offered to                  |
|---------------|----------|----------------|----------------------------------|---------------------|----|-----|-------|--------|-----------------------------|
| 2025-<br>2026 | Ι        | TH23A19        | Mathematics<br>for Sciences<br>I | 7                   | 25 | 75  | 100   | 5      | B.Sc(.Physics)              |
| 2025-<br>2026 | I        | TH23A18        | Mathematics I                    | 7                   | 25 | 75  | 100   | 5      | B.Sc.(Chemistry,<br>Botany) |

| COURSE<br>CODE | COURSE TITLE                               | CATEGORY | L  | Т | P | CREDIT |
|----------------|--------------------------------------------|----------|----|---|---|--------|
| TH24A02        | MATHEMATICS FOR<br>MANAGEMENT I SEMESTER I | THEORY   | 73 | 2 | - | 4      |

## **Preamble**

- To inspire the students to get the knowledge in basic mathematical concepts
- Introducing the need for mathematics to recognize appropriate investigate and interpretive procedures in management

## **Course Learning Outcomes**

Upon the successful completion of the course, students will be able to

| CLO        | CLO Statement                                                                                            | Knowledge |
|------------|----------------------------------------------------------------------------------------------------------|-----------|
| Num<br>ber |                                                                                                          | Level     |
| CLO1       | Recall the basics concepts about collection and representation of data and Measures of central tendency. | K1        |
| CLO2       | Understand the mathematical results to find solutions in Mathematics of Finance.                         | K2        |
| CLO3       | Apply the fundamental mathematical concepts to solve statistical problems.                               | K3        |
| CLO4       | Analyze and evaluate the accuracy of common statistical methods in excel.                                | K4        |

## **Mapping with Programme Learning Outcomes**

| CLOs/PLOs | PLO1 | PLO2 | PLO3 | PLO4 | PLO5 |
|-----------|------|------|------|------|------|
| CLO1      | S    | S    | S    | M    | S    |
| CLO2      | S    | S    | M    | S    | M    |
| CLO3      | S    | S    | S    | S    | S    |
| CLO4      | M    | S    | S    | S    | S    |

S- Strong; M-Medium

### **Syllabus**

MATHEMATICS FOR MANAGEMENT I (Common to BBA(Aided), BBA (IB & RM), BBA (BPM))

Credits :4 Hours: 73

UNIT 14 hrs

Matrices-Fundamental ideas about Matrices- operational Rules-Matrix Multiplication- Solving a system of linear equation by Cramer's rule and matrix inverse method, Inversion of Square Matrices of 3<sup>rd</sup> order, rank, simple problems.

UNIT II 14 hrs

Mathematics of Finance- Simple and Compound Interest, Depreciation, Annuities, Sinking Fund.

UNIT III 14 hrs

Meaning and scope, statistical survey, collection of data, classification and tabulation, diagrams and graphs. Introduction to statistical software and learning graphs and diagrams using Excel.

UNIT IV 16 hrs

Measure of central tendency, arithmetic mean, median and mode, geometric and harmonic mean. Measures of dispersion: Range, Quartile deviation, mean deviation, standard deviation, coefficient of variation. Correlation – rank correlation. Simple problems related to above mentioned concepts using Excel.

UNIT V 15 hrs

Analysis of Time Series: Components of Time Series-Secular Trend-Moving Average Method-Method of Least Squares. Index numbers: Weighted and unweighted indices, cost of living index.

### **Text Books**

| S. No | Author                                                                   | Title of the book                      | Publishers            | Year &<br>Edition |  |  |
|-------|--------------------------------------------------------------------------|----------------------------------------|-----------------------|-------------------|--|--|
| 1.    | P.R. Vittal                                                              | Business Mathematics and Statistics    | Margham<br>Publishers | 2002              |  |  |
|       | UNIT II: Chapter                                                         | rs: 8,9,10                             |                       |                   |  |  |
| 2.    | P.A. Navnitham                                                           | Business Mathematics And<br>Statistics | Jai Publishers        | 2003              |  |  |
|       | UNIT I : V                                                               | Vol I Chapter -4 sections :1,2,3,4     | ,5,6,7,9,10           | 1                 |  |  |
|       | UNIT III : Y                                                             | Vol II Chapter-1, 2, 3, 5, 6           |                       |                   |  |  |
|       | <b>UNIT IV</b> : Vol II Chapter-7, 8. Ch-12: (pg 503-521)                |                                        |                       |                   |  |  |
|       | <b>UNIT V</b> : Vol II Chapter-14 (pg no:579-601) Chapter- 10 (444- 471) |                                        |                       |                   |  |  |

### **Reference Books**

|   | S. No | Author    | Title of the book   | Publishers                     | Year & Edition |
|---|-------|-----------|---------------------|--------------------------------|----------------|
| Ī | 1.    | S P Gupta | Statistical Methods | Sultan Chand & Sons publishers | 2004, I Edn.   |

## **MOOC** learning

## https://nptel.ac.in/courses/111/104/111104120/

Prof Shalabh, Department of Mathematics, IIT Kanpur

Lecture 14 Airthmetic mean

Lecture 15 Median Lecture 16 Quartiles

Lecture 17 Mode Geometric mean

Lecture 20 Mean and standard deviation

Lecture 21 coefficient of variation

https://nptel.ac.in/courses/111/106/111106112/

Prof G. Srinivasan, Department of Mathematics, IIT Madras

Lecture 1: Introduction to probability and statistics

Lecture 2: Types of data Lecture 4: Data and diagram

### Note

Question paper setters to confine to the above text books only

## **Pedagogy**

Chalk and Talk, Seminar, Group Discussion, Numerical Exercises and Demonstration.

## **Course Designers**

- 1. Ms.S.Lakshmi, Assistant Professor, Department of Mathematics
- 2. Dr.J.Rejula Mercy, Assistant Professor, Department of Mathematics

| COURSE<br>CODE | COURSE TITLE  | Category | L   | T | P | Credit |
|----------------|---------------|----------|-----|---|---|--------|
| TH24A18        | MATHEMATICS I | Theory   | 103 | 2 | - | 5      |

## Preamble

To introduce the fundamentals concepts of vector calculus, matrices, Laplace transforms and tensors which acts as a tool for understanding basic theories in theoretical physics

## **Prerequisite**

Knowledge in basic concepts of calculus and matrices

## **Course Learning Outcomes**

On the successful completion of the course, students will be able to

## **Mapping with Programme Learning Outcomes**

| CLO    | CLO Statement                                                       | Knowledge  |
|--------|---------------------------------------------------------------------|------------|
| Number |                                                                     | Level      |
| CLO1   | Recall the knowledge of calculus, vectors, vector calculus and      | <b>K</b> 1 |
|        | these basic mathematical structures which are essential in solving  |            |
|        | problems in various branches of Physics as well as in engineering.  |            |
| CLO2   | Understanding mathematical tools like calculus, integration, series | K2         |
|        | solution approach, special function and prepare the student to      |            |
|        | solve problems which model physical phenomena.                      |            |
| CLO3   | Apply problem-solving skills that are required to solve different   | К3         |
|        | types of Physics related problems with well-defined solutions.      |            |
| CLO4   | Analyze and tackle open-ended problems that belong to the           | K4         |
|        | disciplinary area boundaries using mathematical equation risen out  |            |
| -      | of-it                                                               |            |

| CLOs/PLOS | PLO1 | PLO2 | PLO3 | PLO4 | PLO5 | PLO6 |
|-----------|------|------|------|------|------|------|
| CLO1      | S    | S    | S    | S    | S    | S    |
| CLO2      | S    | S    | S    | S    | S    | S    |
| CLO3      | S    | S    | S    | S    | S    | S    |
| CLO4      | S    | S    | S    | S    | S    | S    |

**S- Strong** 

### **MATHEMATICS - I**

Credits:5 Hours:103

UNIT I 21hrs

Vector Calculus: Scalar and vector point functions - Differentiation of vectors - Differential vector Operators - Directional derivative: Gradient, Divergence and curl - MAPLE Applications Stepwise Solutions of Vector Calculus.

UNIT II 20 Hrs

Integration for vectors: Line, Surface and Volume integrals - Theorems of Gauss, Green's and Stoke's (Statement only) - Verification of Simple problems - MAPLE Applications - Stoke's problem.

UNIT III 21Hrs

Laplace Transforms: Definition-Laplace Transform of  $e^{at}$ , cosat, sinat, coshat, sinhat,  $t^n$ , n a positive integer -L[f'(t)], L[f''(t)],....,  $L[f^n(t)] - L$  Laplace transform of  $e^{at}cosbt$ ,  $e^{at}sinbt$  and  $e^{a}t^n$ . Inverse Laplace transforms of standard functions. Solving differential equations of second order with constant coefficients using Laplace transform.

UNIT IV 20 Hrs

Matrices: Eigen values and Eigen vectors - Cayley Hamilton theorem (without proof) - Verification - Using this theorem finding the inverse of a matrix - Partition of matrices - Diagonalisation of matrices - Power of matrices.

UNIT V 21 Hrs

Tensor Analysis: Definition of Tensors – Contravariant - Covariant and mixed tensors - Addition and subtraction of Tensors-Summation Convention-Symmetry and Axisymmetric Tensor - Contraction and direct product – Quotient Rule – MAPLE Application – Tensor Calculus with differential Geometry.

### **TextBooks**

| S. | Author                       | Title of the    | Publishers            | Year & Edition      |
|----|------------------------------|-----------------|-----------------------|---------------------|
| No |                              | book            |                       |                     |
| 1  | P.Kandasamy & K.Thilagavathy | Allied          | S.Chand & company     | 2004,First          |
|    |                              | Mathematics     | LTD –                 | Edn.                |
|    |                              | Volume II       |                       |                     |
|    |                              | (For Unit I     |                       |                     |
|    |                              | &II)            |                       |                     |
| 2  | T.K. Manicavachagam          | Ancillary       | S.Viswanathan         | Vol. I - 2009 ,Vol. |
|    | Pillai and S. Narayanan      | Mathematics     | (Printers and         | II - 2008           |
|    |                              | (For Unit III & | Publishers) Pvt. Ltd. |                     |
|    |                              | IV)             |                       |                     |
|    |                              | •               |                       |                     |
|    |                              | Volume - I      |                       |                     |

|   |                                      | &Volume - II     |               |               |
|---|--------------------------------------|------------------|---------------|---------------|
|   |                                      |                  |               |               |
|   |                                      |                  |               |               |
|   |                                      |                  |               |               |
| 3 | A.W.Joshi                            | Matrices and     | New Age       | 2010, Revised |
|   |                                      | Tensors in       | International | Edn.          |
|   |                                      | Physics(For unit | Publishers    |               |
|   |                                      | V)               |               |               |
| 4 | http://www.maplesoft.com/application |                  |               |               |

## Reference Books

| S. | Author                 | Title of the | Publishers              | Year & Edition    |
|----|------------------------|--------------|-------------------------|-------------------|
| No |                        | book         |                         |                   |
| 1  | P.Durai Pandian and    | Vector       | S Chand Publications    | 2014 ,Revised     |
|    | Kayalal Pachaiyappa    | Analysis     |                         | Edn.              |
| 2  | Shanthinarayan and P.K | Vector       | S Chand publications    | 2016, Fourth Edn. |
|    | Mital                  | Calculus     |                         |                   |
| 3  | P.C .Mathews           | Vector       | Springer Verlang London | 1998, Seventh     |
|    |                        | Calculus     | Ltd.                    | Edn.              |
| 4  | B. D. Gupta            | Mathematical | Vikas Publications      | 1993, Fourth Edn. |
|    |                        | Physics      |                         |                   |

Unit I&II : Chapters 1 to3

Unit III : Chapter 7 (Volume II)

Unit IV : Chapter 3 (Volume I) 6.2, 14.0 to 17

Unit V: Part II, Chapters 15, 16,17

## E – Content

- 1. Gradient, Divergence and curl
  - i) https://www.voutube.com/watch?v=TYOYID9gJxM
  - ii) https://www.voutube.com/watch?v=v3ZC4Mo1fS0
- 2. Stoke's Problem
  - i) https://www.voutube.com/watch?v=3NvLlzM\_ImE
  - ii) https://www.voutube.com/watch?v=fWZCIUUrkuA
- 3. Inverse Laplace transforms of standard functions
  - i) https://www.voutube.com/watch?v=Y8GXpS31CGI
- 4. Diagonalisation of matrices Power of matrices
  - i) https://www.voutube.com/watch?v=eEo7K8iPS9Y
  - ii) https://www.voutube.com/watch?v=LTb9V84hG9w
- **5. Tensor Calculus with differential Geometry** 
  - i) https://www.voutube.com/watch?v=noimvi5OTis

## Pedagogy:

Chalk and Talk, Seminar, Group Discussion, Numerical Exercises and Demonstration

## **CourseDesigners:**

- 1. Dr.C. R. Parvathy, Associate Professor and Head, Department of Mathematics
- 2. Ms. A. Karpagam, Associate Professor, Department of Mathematics

| COURSE  | COURSE TITLE               |          |     |   |   |         |
|---------|----------------------------|----------|-----|---|---|---------|
| CODE    |                            | Category | L   | T | P | Credits |
| TH24A19 | MATHEMATICS FOR SCIENCES I |          |     |   |   |         |
|         |                            | Theory   | 103 | 2 | - | 5       |

## **Preamble**

- To inspire the students to use appropriate and relevant, fundamental and applied mathematical knowledge.
- > To explore how Chemistry and Mathematics interact with other disciplines with industry and with wider society.

## **Prerequisite**

➤ Knowledge in Calculus and Set theory.

## **Course Outcomes**

On the successful completion of the course, students will be able to

| CLO    | CLO Statement                                                                                                                                                              | Knowledge |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Number |                                                                                                                                                                            | Level     |
| CL01   | Recall the important quantities associated with vector fields such as divergence, curl and scalar potential and concepts in matrices, set theory and equivalence relations | K1        |
|        | Understanding the various concepts of line integrals and Laplace transform of one variable through problems.                                                               | K2        |
| CLO3   | Applying fundamental theorem of line integrals, Green's theorem, Stoke's theorem and Divergence theorem to evaluate integrals                                              | К3        |
|        | Demonstrate knowledge of basic concepts such as Abelian groups, normal subgroups, quotient groups, cyclic groups, permutation groups and group actions                     | K4        |

## **Mapping with Programme Outcomes**

| CLOs/<br>PLOs | PLO1 | PLO2 | PLO3 | PLO4 | PLO5 | PLO6 |
|---------------|------|------|------|------|------|------|
| CLO1          | S    | S    | S    | M    | S    | S    |
| CLO2          | S    | M    | S    | S    | S    | S    |
| CLO3          | S    | S    | S    | M    | S    | S    |
| CLO4          | S    | S    | M    | S    | S    | S    |

S- Strong; M-Medium

## **Syllabus**

### MATHEMATICS FOR SCIENCES I

Credits: 5 Hours: 103
UNIT I 21Hrs

Vector Calculus: Scalar and Vector point functions - Differentiation of vectors - Differential Operators - Directional derivative: Gradient - Divergence and curl - MAPLE Applications - Stepwise Solutions of Vector Calculus.

UNIT II 20Hrs

Integration for vectors Line, surface and volume integrals - Theorems of Gauss, Green's and Stoke's (statements only) Verification with MAPLE Applications – Stoke's problem.

UNIT III 21Hrs

Laplace Transforms: Definition—Laplace Transform of  $e^{at}$ , cosat, sinat, coshat, ,  $t^n$ , n is a positive integer— L [f''(t)], L[f'''(t)] ,....., L[f^n(t)] — Laplace transform of  $e^{at}$ cosbt , $e^{at}$ sinbt and  $e^{at}$ tn—Inverse Laplace Transforms of standard functions—Solving differential equations of second order with constant coefficients using Laplace transform.

UNIT IV 20Hrs

Matrices: Eigen values and eigen vectors-Cayley Hamilton theorem (with out proof) Verification – Finding the inverse of a matrix (Using Cayley Hamilton theorem).

UNIT V 21 Hrs

Review of Set theory and equivalence relations – Group

- Properties Order of an element Subgroups Cyclic groups
- Theorems Permutation group Symmetric group S<sub>n</sub>.

### **Text Books**

| S. | Author                                          | Title of the book                                          | Publishers                                        | Year & Edition                |  |  |  |
|----|-------------------------------------------------|------------------------------------------------------------|---------------------------------------------------|-------------------------------|--|--|--|
| No |                                                 |                                                            |                                                   |                               |  |  |  |
| 1  | P.Kandasamy &<br>K.Thilagavathy                 | Allied Mathematics<br>Volume II (For<br>Unit I,II)         | S.Chand & company Ltd.                            | 2004, 1st Edn.                |  |  |  |
| 2  | T.K.Manicavac<br>hagam Pillai &<br>S. Narayanan | Ancillary Mathematics (For Unit III & IV) Vol. I & Vol. II | S.Viswanathan (Printers and Publishers) Pvt. Ltd. | Vol-I -2008 Vol- II -<br>2009 |  |  |  |
| 3  | P.Kandasamy &<br>K.Thilagavathy                 | Allied Mathematics<br>Volume<br>II (For Unit V)            | S Chand &<br>Company Ltd.                         | 2004, 1 <sup>st</sup> Edn.    |  |  |  |
| 4  | http://www.maplesoft.com/applications/          |                                                            |                                                   |                               |  |  |  |

Unit I&II : Chapters 1 to 3
Unit III : Chapter 7 Volume II
Unit IV : Chapter 3 Volume I

Unit V : Group Theory Chapters 1 to 4 (Volume II)

## Reference Books

| S. | Author         | Title of the | Publishers                    | Year & Edition              |
|----|----------------|--------------|-------------------------------|-----------------------------|
| No |                | book         |                               |                             |
| 1  | P.Durai        | Vector       | S Chand Publications          | 2014 , 1 <sup>st</sup> Edn. |
|    | Pandian and    | Analysis     |                               |                             |
|    | Kayalal        |              |                               |                             |
|    | Pachaiyappa    |              |                               |                             |
| 2  | Shanthinarayan | Vector       | S Chand publications          | 2016, 4 <sup>th</sup> Edn.  |
|    | P.K. Mital     | Calculus     |                               |                             |
| 3  | P.C. Mathews   | Vector       | Springer Verlang London Ltd.  | 1998, 7 <sup>th</sup> Edn.  |
|    |                | Calculus     |                               |                             |
| 4  | G. Balaji      | Transforms   | G. Balaji publishers, Revised | 2011, Revised Edn.          |
|    |                | and          | edition                       |                             |
|    |                | Partial      |                               |                             |
|    |                | differential |                               |                             |
|    |                | equations    |                               |                             |

## Note

Question paper setters to confine to the above text books only.

## **E- Content**

1) Scalar and Vector point functions: https://www.youtube.com/watch?v=uanWfSQ6cq8&ab

2) Line, surface and volume integrals: https://www.youtube.com/watch?v=NyG0vRn5FfU&ab

- 3) Inverse Laplace Transforms of standard functions: https://www.youtube.com/watch?v=Y8GXpS31CGI&ab
- 4) Eigen values and eigen vectors: https://www.youtube.com/watch?v=PFDu9oVAE-g&ab
- 5) Review of Set theory and equivalence relations: https://www.youtube.com/watch?v=IZzEiuY-c2M&ab

## **Pedagogy**

Chalk and Talk, Seminar, Group Discussion, Demonstration and Numerical Exercises.

## **CourseDesigners:**

- 1. Dr.K.Sumathi, Associate Professor and Head, Department of Mathematics
- 2. Ms. Sharmilaa, K, Associate Professor, Department of Mathematics

## Job oriented Course - Cryptography

## **Course objectives**

To understand basics of cryptography to work on real time data

**Course Outline:** 

UNIT I: 7 hrs

**Introduction to the concepts of Security:** Introduction, The need for security, Security approaches, Principles of security, Types of attacks.

UNIT II: 8 hrs

**Cryptographical Techniques:** Introduction, plain text and cipher text, substitution techniques, transposition techniques, encryption and decryption, symmetric and asymmetric key cryptography, stenography, key range and key size, possible types of attacks.

UNIT III: 7 hrs

**Block Cipher Principles :** Stream Ciphers and Block Ciphers, Motivation for the Feistel Cipher Structure, The Feistel Cipher. **The Data Encryption Standard:** DES Encryption, DES Decryption.

UNIT IV: 8 hrs

A Des Example: Results, The Avalanche Effect. The Strength of Des: The Use of 56-Bit Keys, The Nature of the DES Algorithm, Timing Attacks. Differential and Linear Cryptanalysis: Differential Cryptanalysis, Linear Cryptanalysis. Block Cipher Design Principles: DES Design Criteria Number of Rounds, Design of Function F, Key Schedule Algorithm.

UNIT V:

**Capstone Project from Industry** 

#### **Data Science in the Real World**

**Duration: 60 Hrs** 

UNIT I:

Introduction to real-world applications of data science across industries like healthcare, ecommerce, finance, and social media. Share case studies and current trends to inspire students.

UNIT II:

Data Wrangling and Cleaning - how to handle messy data: dealing with missing values, removing duplicates, fixing incorrect formats, and identifying outliers.

UNIT III:

Introduction to Machine Learning -an overview of machine learning concepts such as supervised and unsupervised learning, classification vs regression, and the stages of building a model (data  $\rightarrow$  model  $\rightarrow$  evaluation).

UNIT IV:

Data Visualization Principles -best practices for creating effective visualizations. Discuss how to choose the right chart, the basics of dashboarding, and how to tell stories with data.

UNIT V:

Introduction to Python for Data -basic Python syntax, using Jupyter notebooks, and important libraries like NumPy and Pandas.

Ethics, Privacy, and Bias in Data -responsible data usage, AI bias, data privacy (GDPR basics), and the social impact of algorithms.

## \*Capstone Hands on: Clean, Visualize and Model

1. Getting Started with Python -Students will write basic Python code, work with lists, loops, functions, and learn how to import CSV files and explore data using print statements.

- 2. Data Cleaning with Pandas -Practice cleaning real-world datasets using Pandas. Students will use functions like dropna(), fillna(), filtering rows, changing data types, and handling duplicates.
- 3. Exploratory Data Analysis (EDA) -Learn to generate descriptive statistics, identify trends, and visualize relationships using histograms, box plots, and correlation heatmaps.
- 4. Data Visualization with Matplotlib and Seaborn -Students will build different types of charts bar, pie, line, scatter plots, and heatmaps and learn how to customize visual aesthetics.
- 5. Basic Machine Learning with Scikit-learn (Guide students through building a simple machine learning model (like Linear Regression or K-Nearest Neighbors). They will split data into training/testing sets, fit the model, and evaluate its accuracy.
- 6. Capstone Mini Project In small groups, students will choose a dataset, clean and analyze it, visualize findings, and (optionally) apply a basic ML model. They'll wrap it up by presenting their insights to the class.

\* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \*